• 제목/요약/키워드: Compressive Member

검색결과 284건 처리시간 0.025초

자기치유 재료 혼입 모르타르 보의 자기치유 성능 평가 (Evaluation of Self-Healing Performance for Mortar Beams Containing Self-Healing Materials)

  • 신동익;무하마드 하룬;민경성;이광명;이정윤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권1호
    • /
    • pp.67-73
    • /
    • 2020
  • 본 연구에서는 실험을 통하여 자기치유 재료 혼입 모르타르 보의 자기치유 성능을 평가하였다. 실험에는 일반 모르타르 보 실험체와 자기치유 모르타르 보 실험체가 사용되었으며, 모르타르의 압축강도, 내력 및 균열의 자기치유 효과를 비교하여 자기치유 성능을 평가하였다. 실험결과 자기치유 재료를 혼입한 모르타르의 압축강도가 일반 모르타르의 압축강도보다 작았지만 28일 압축강도에 대한 118일 압축강도 비율은 동일하게 나타났다. 실험체의 내력은 재령일이 길어질수록 증가하는 경향을 나타냈다. 일반 모르타르 실험체는 균열이 발생할 경우 재령일이 증가하여도 하중은 회복되지 않았으나 자기치유 모르타르 실험체의 경우 반응 생성물의 영향으로 내력이 다소 회복되는 경향을 나타냈다. 균열폭은 두 종류의 실험체 모두 치유기간이 지난 후 감소하는 경향을 보였으나 자기치유 모르타르 실험체에서만 반응생성물이 관찰되었다.

절판형 응력제한 기구의 개발에 관한 연구 (A Study on the Development of Force Limiting Devices of Folded Plate Type)

  • 김철환;채원탁
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.571-579
    • /
    • 2014
  • 고층건축물의 수평변위 제어에 필요한 브레이스는 구조물의 경제성 확보를 위해 주로 새장한 부재를 설치하여 인장하중에 저항하도록 하는 경우가 많다. 하지만, 브레이스에 압축하증이 작용할 경우에는 부재가 하중에 저항하지 않는 부재로 상정하여 설계되고 있다. 이는 브레이스에 압축하중이 작용할 경우 부재의 탄성좌굴이 발생하게 되어 급격히 내하력을 잃어버리게 되기 때문이다. 이러한 문제를 해결하기 위해 많은 연구가 이루어져 왔으며, 그중 대표적인 것이 응력제한장치라 할 수 있다. 응력제한장치는 세장한 부재가 압축하중에 의해 탄성좌굴이 발생하기 전에 부재가 항복하여 안정적인 거동을 유도하는 것을 목적으로 하고 있다. 본 논문에서는 응력제한장치로서 절판방식을 제안하고 실험과 유한요소 해석을 수행하였다. 실험은 절판단면의 경사각을 변수로 하여, FLD장치 및 FLD를 장착한 부재에 대한 압축실험 및 해석을 진행하였다. 그 결과 절판방식의 실험체는 항복 후 소성영역에서 내력의 큰 저하 없이 안정적인 거동을 나타내고 있어 응력제한방식으로서 유효함이 확인되었다.

ACI 직사각형 응력블럭과 실제 응력분포에 부재의 크기가 미치는 영향 (Effects of Member Sizes on ACI Rectangular Stress Block and Actual Stress Distribution)

  • 이성태;김장호;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.909-914
    • /
    • 2001
  • It is important to consider an effect of concrete member sizes when estimating the ACI rectangular stress block of a reinforced concrete flexural member. However, the experimental data and analytical analyses are still not available for a proper evaluation. For all types of loading conditions, the trend is that the size of an ACI rectangular stress block tends to change when the member sizes change. In this paper, the size variations of strength coefficients for ACI rectangular stress block and actual stress distribution have been studied. Results of a series of C-shaped specimens subjected to axial compressive load and bending moment were adopted from references 1 and 2. The analysis results show that the effect of specimen sizes on strength coefficients for ACI rectangular stress block and actual stress distribution of concrete member was apparent. Thus, the results suggest that the current strength criteria based design practice should be reviewed.

  • PDF

휨핀칭과 에너지 소산능력 (Flexural Pinching and Energy Dissipation Capacity)

  • 박흥근;엄태성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.275-285
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics and mechanisms of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By analyzing existing experimental studies and numerical results, it was found that energy dissipation capacity of a member is directly related to energy dissipated by re-bars rather than concrete that is a brittle material, and that it is not related to magnitude of axial compressive force applied to the member. Therefore, for a member with specific arrangement and amount of re-bars, the energy dissipation capacity remains uniform regardless of the flexural strength that is changed by the magnitude of axial force applied. Due to the uniformness of energy dissipation capacity pinching appears in axial compression member. The flexural pinching that is not related to shear force becomes conspicuous as the flexural strength increases relatively to the uniform energy dissipation capacity. Based on the findings, a practical method for estimating energy dissipation capacity and damping modification factor was developed and verified with existing experiments.

  • PDF

철근 콘크리트 구조 부재의 압축강도 추정 신뢰도 평가 (Reliability Evaluation of Compressive Strength of Reinforced Concrete Members)

  • 홍성욱;박찬우;이용택;김승훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권6호
    • /
    • pp.132-140
    • /
    • 2019
  • 본 연구는 철근콘크리트 단층 구조물의 구조 부재 위치에 대한 비파괴검사법을 이용한 추정 신뢰도를 알아보기 위해 기둥, 벽체, 보 및 슬래브로 구성된 실험체를 제작하고, 기존 추정식과 비교 과정에서 정확한 분석을 위해 오차율 비교와 모평균 구간 추정을 사용하여 통계적 접근을 통한 신뢰성을 분석하고자 한다. 그 결과, 초음파속도법을 이용하여 압축강도를 추정한 결과와 코어시험 결과를 비교한 전체 평균 오차율은 18.8%, 반발경도법을 이용하여 압축강도를 추정한 결과와 코어시험 결과를 비교한 전체 평균 오차율은 20.1%가 도출되어 현장 적용성을 확인하였다. 그리고 부재별 신뢰성 부분에서 초음파속도법과 반발경도법을 이용하여 신속하고 효율적인 구조물 안전진단을 하기 위해서 각각 벽체 부재와 보 부재를 중심으로 압축강도 추정 시 신뢰도 높은 결과를 도출되는 것을 확인하였다.

콘크리트 충전 강관 부재의 휨거동에 관한 유한요소해석 (Finite Element Analysis of the Flexural Behavior of Concrete Filled Steel Tubes)

  • 강재윤;최은석;진원종;이정우;김병석;이흥수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.418-421
    • /
    • 2006
  • Appropriate analysis models for concrete-filled steel tube (CFT) subjected to bending moment were determined to assess flexural behavior of CFT member. Applying this model, finite element analyses was performed and compared against experimental data considering the compressive strength of in-filling material and the composite action between tube shell and in-filling core. Analysis results showed that the FE model proposed in this study is feasible for the analytical investigation of the flexural behavior of CFT member according to loading conditions, effect of compressive strength of various core materials and other design parameters.

  • PDF

비부착식 단일 강연선용 원형 정착구를 적용한 포스트텐션 정착 구역의 보강 (Anchorage Zone Reinforcement for Unbonded Post-Tensioned Circular Anchorage for Single Tendon)

  • 김민숙;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.117-124
    • /
    • 2018
  • In the post-tensioned concrete member, additional reinforcement is required to prevent failure in the anchorage zone. In this study, the details of reinforcement suitable for the anchorage zone of the post-tensioned concrete member using circular anchorage was proposed based on the experimental results. The tests were conducted with the compressive strength of concrete and reinforcement types as variables. The experimental results indicated that the additional reinforcement for the anchorage zone is required when the compressive strength of concrete is less than 17.5 MPa. U-shaped reinforcement shows most effective performance in terms of maximum strength and cracks patterns.

부순모래를 사용한 콘크리트의 고품질화 기술개발을 위한 현장 Mock-up 실험 (Mock-up Test for Development of High Quality Concrete Using Crushed Sand in Construction Field)

  • 유승엽;김기훈;손유신;이승훈;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.17-20
    • /
    • 2005
  • This study investigates mock-up test of the concrete containing crushed sands with improved quality and following could be draws as conclusions. The slump satisfies the target value. The air content reaches the goal, however, it decreases by the occurrence of loss with elagse of age. In normal strength region, the setting time of CS24 member is shorter than that of SS24 member. In high strength region, the setting time of SS50 member is make only slower than that of CS5O because of the use of retarding AE agent. The compressive strength of the concrete using crushed sands is little higher than the concrete using washed sea sands, and the compressive strength of core sample increases at lower part. Drying shrinkage of the concrete using crushed sands is larger than that using washed sea sands. At water caring condition, both the concrete using crushed sands and using washed sands expand at first, exhibit to be swelled and with elagse of age, they remain relatirely constant. Also, the drying shrinkage occurred greatly when the width and thickness of a member are small because it is easy to evaporate the inner part vapor in the small width and thickness of a member. there can be little different according to the location of a contact gauge, however it is similar to the change of specimen's length change. The concrete using crushed sands, of which grading, grain shape and fine particle is improved, are comparable to the quality of the concrete using washed sea sand.

  • PDF

면내 전단하중과 양축압축하중을 받는 선박 판부재의 이중판 설계시스템 개발 (Development of Doubler Design System for Ship Plate Members Subjected to In-plane Shear and Biaxial Compressive Loads)

  • 함주혁
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.242-249
    • /
    • 2017
  • A design system for doubler reinforcement of the ship plate members subjected to in-plane shear and biaxial compressive loads was developed. This design system of doubler reinforcement on ship plate members established by design supporting system and this system was based on the buckling evaluation process of ship plate members for these in-plane loads. Each design parameters were suggested by equations as the form of influence coefficients for the doubler reinforcement subjected to the various in-plane loads including shear load. Strength of doubler plate member reinforced on the plate member could be suggested by the equivalent flat plate thickness after the consideration of corelation equations in the design system of doubler reinforcement. Level of strength recovery of ship plate members for these in-plane loads according to the local reinforcement by doubler could be suggested by use of this design system in the initial repair design stage of shipyards.

Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve

  • Jiang, Shouchao;Guo, Xiaonong;Xiong, Zhe;Cai, Yufang;Zhu, Shaojun
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.585-596
    • /
    • 2017
  • Tubular joints have been widely used in offshore platforms and space structures due to their merits such as easy fabrication, aesthetic appearance and better static strength. For existing tubular joints, a grouted sleeve reinforced method was proposed in this paper. Experimental tests on five tubular T-joints reinforced with the grouted sleeve and two conventional tubular T-joints were conducted to investigate their mechanical behaviour. A constant axial compressive force was applied to the chord end to simulate the compressive state of the chord member during the tests. Then an axial compressive force was applied to the top end of the brace member until the collapse of the joint specimens occurred. The parameters investigated herein were the grout thickness, the sleeve length coefficient and the sleeve construction method. The failure mode, ultimate load, initial stiffness and deformability of these joint specimens were discussed. It was found that: (1) The grouted sleeve could change the failure mode of tubular T-joints. (2) The grouted sleeve was observed to provide strength enhancement up to 154.3%~172.7% for the corresponding un-reinforced joint. (3) The initial stiffness and deformability were also greatly improved by the grouted sleeve. (4) The sleeve length coefficient was a key parameter for the improved effect of the grouted sleeve reinforced method.