• Title/Summary/Keyword: Compression wear

Search Result 89, Processing Time 0.047 seconds

Development of Women's Cycle Wear Top with Improved Function (운동기능성 향상을 위한 여성용 사이클웨어 상의 개발)

  • Kwon, Chae-Ryung;Kim, Dong-Eun
    • Fashion & Textile Research Journal
    • /
    • v.21 no.1
    • /
    • pp.75-87
    • /
    • 2019
  • The purpose of the study was to suggest a cycle wear top jersey improved in mobility. The study developed a new cycle wear with improvement in dissatisfaction factors by planning design, pattern and the functionality of fabric. Considering the amount of sweat and the necessities of compression part, the basic material, the additional compression material, and the mesh material were arranged differently according to areas. The assessment of the developed cycle wear was composed of wearing comfort evaluation by female cyclist, photo analysis and garment pressure evaluation. The developed cycle wear was evaluated and compared with the current cycle wear. As a result of wearing comfort evaluation, the developed cycle wear was evaluated as better than the existing ones in all part, particularly in the areas of reflection tape and materials, partial pressure, pocket size, and prevention of loss. Photo analysis was in agreement with the appearance evaluation of the participants. As a result of garment pressure evaluation, the front neck part was more comfortable and the upper arm, abdomen, and waist area showed higher pressure, so it partially supported the body. This study has significant meaning for developing a new cycle wear top, protecting the body and improving the exercise effect.

An Analysis of Compression Wear Designs and Structural Elements (컴프레션웨어의 디자인과 제품구성요소 분석)

  • Lee, Jung Hwa;Jun, Jung Il;Choi, KuengMi
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.421-433
    • /
    • 2014
  • The aim of this study was to provide compression wear manufacture brands with information needed for product development. 8 tops and 7 bottoms from widely recognized compression wear manufacture brands were selected, and their product structural elements were analyzed, too. The results showed that most compression wear designs were applications of cutting lines designed considering muscle movements of the human body. The average number of cutting lines for patterns and designs were 14 for tops and 15 for bottoms. Different colored material was mainly used on the top for areas that require ventilation or high movement during sports for tops, and for areas that require muscle and joint support during sports for bottoms. The functionality of top materials were found to be stretch, muscle support, moisture absorption and high speed drying, warmth and ventilation for tops, in order of frequency, and stretch, muscle support, moisture absorption and high speed drying, and pressure for bottoms, in order of frequency. Tops were cut in the direction of the lengthwise grain, and bottoms were not only cut in the direction of the lengthwise grain, but also in the direction of the crosswise grain and bias for many products. Tops consisted of an average of 13 organically connected panels, and bottoms consisted of an average of 18 organically connected panels, which was analyzed to improve functionality. The average clothing surface area stretch rate was 85.7% for tops and 70.0% for bottoms, indicating that bottoms were designed to have higher strain rates compared to tops.

Development of Compression Wear Tops for Men in Their Forties Based on Muscle Locations (인체 근육 위치에 기초한 40대 남성을 위한 컴프레션 웨어 상의 개발)

  • Lee, Junghwa;Jun, Jungil;Choi, Kuengmi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.271-286
    • /
    • 2015
  • This study presented functional designs for development of functional compression wear for men in their forties based on body muscles as well as designed 2D patterns using 3D standard body form data of men in their forties. Patterns with an optimal stretch rate were proposed through a comfort evaluation. Different material was used for different areas such as the sports ability strengthening areas including body parts that often move for sports (such as the shoulders, abdomen and lower arm), areas that require ventilation for perspiration (such as the chest and back center, and armpits), and stable form areas (such as the chest, waist and elbows). The front and back surface areas of the developed pattern was an average 102.4% size compared to the body surface area. The results indicated that the 90% reduction pattern showed changes in pressure value according to area of movement, had the best breathability when worn, and had the best, most comfortable fit compared to the other subjects. The clothing pressure values of the pattern were around 22.1-23.4mmHg for the arm area (which has a big movement range and has many muscles) and 10.4-11.8mmHg for chest and abdomen areas related to major organs and breathing, indicating appropriate clothing pressure. A compression wear top pattern with pressure appropriate to the target age range and excellent appropriateness for the body form will be developed for men in their forties. A study method will be proposed to develop design technology for ergonomic compression wear tops with excellent fit and comfort.

Design of 3D compression upper wear based on skin deformation during arm abduction (팔 외전 시 몸통의 피부 변화량 분석과 이를 활용한 3D 컴프레션 상의 설계)

  • Kim, Nam Yim;Wu, Yan Jun;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.24 no.5
    • /
    • pp.687-700
    • /
    • 2015
  • Lines of non-extension (LoNEs) on torso surface during arm abduction were investigated to provide appropriate location for inserting less-extensible yarns which can be used as seams for design and or clothing pressure variation. As experimental methods, reference points about 3 cm apart were marked on the skin and scanned at 30, $90^{\circ}$ and $135^{\circ}$ arm abduction. Skin deformation was measured by connecting reference points in horizontal, vertical and various angles of diagonal directions. Observation of skin deformation was made within the separated sections of the torso as well as integrated ones to cover the various occasions of design application. LoNEs of front and back torso were provided as mapping lines. Actual compression wear of three types was constructed with different pattern reduction rate at each separated section using LoNEs as boundary cutting lines. Clothing pressure and subjective evaluations of those three compression wear were evaluated by six subjects. LoNEs found in this study were useful as seam lines to differentiate clothing pressure at each part of the body, providing positive wear sensation. It is also expected that LoNEs can be paths for less strechable conductive yarns of IT-integrated upper garments.

A Screening Test of Extensibility and the Prediction of Clothing Pressure for Commercial Compression T-shirts (시중 컴프레션 티셔츠의 신장 특성에 대한 스크리닝 테스트와 의복압 예측)

  • Kim, Nam Yim;Hong, Kyunghi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1010-1021
    • /
    • 2017
  • Adjustment of clothing pressure for compression wear is critical to the physiological and psychological satisfaction of the wearer; however, there are limited studies on the practical relationship among extensibility of materials, pattern reduction of compression wear and resultant clothing pressure. This study provides consumers and designers with information on clothing pressure using a screening extensibility test suggested by Ziegert and Keil (1988) even for the final products. As the first step, ten commercial products were collected and their size, extensibility and corresponding clothing pressure were analyzed. It was found that clothing pressure around the waist level could be predicted well from the information of Ziegert and Keil's (1988) % extensibility of the material (Z stretch %) and the actual application of Z stretch amount to the pattern reduction rate (applied % of Z stretch), with an $r^2$ of around 0.80, especially at the waist level. However, it was not simple for the case of clothing pressure around the back of the chest level due to the various design variation and the complexity of the anatomical structure around the trapezius.

Selection and Design of Functional Area of Compression Garment for Improvement in Knee Protection (무릎 안전성 향상을 위한 컴프레션 의복의 기능적 디자인 영역 선정과 설계법)

  • Lee, Hyo Jeong;Kim, Nam Yim;Hong, Kyung Hi;Lee, Ye Jin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.1
    • /
    • pp.97-109
    • /
    • 2015
  • Recently, because the market for compression wear now includes all consumers, not just professionals, various items for recovery after exercising or for enhanced effects from exercise have been introduced. In this research, a systematic and stepwise design process was proposed to develop compression garment that has both functional area and appropriate pressure to protect the knee when exercising. The U-V format functional area that wraps underneath the knee was selected by considering the shape and change in the skin length when bending the knee. After the selection of the functional area, a total of seven knee design areas, including the existing product, were designed to determine the appropriate pressure. After various movements, the compression garment was ranked in terms of support of the knee, level of pressure, discomfort of seam line, and comfort of popliteal; the preferred design was selected using the quad method. Four compression wear garments were produced using two selected preferred designs; the wear evaluation was performed using a seven-point Likert scale. As a result, the optimal reduction rate of the pattern was calculated based on Ziegert and Keil's method. The applied percentage of the fabric stretch at the upper part of the crotch was 66% for the width and 50% for the length; for the lower part of the crotch, only 66% for the width was applied. Moreover, it was determined that the design of the U-V knee protection part was preferred when a 7 mm square was placed at a 1 mm distance because this not only supports the knee but also allows the fabric to accommodate various skin deformations.

Effects of 3D Compression Suits on EEG Analysis during and after Walking (운동 중과 휴식 시 3D 컴프레션 수트 착용에 따른 정량적 뇌파 분석)

  • Choi, Jiyoung;Kim, Namyim;Wu, Yanjun;Hong, Kyunghi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.4
    • /
    • pp.440-454
    • /
    • 2014
  • This study examined the wearing effect of 3D compression suits on quantitative electroencephalogram (EEG) during walking and rest. Ten males in their 20s wore three types of experimental clothing, a loose-fit wear (BS), a 3D compression suit (3D CS), and a power film welded on CS (3D WCS); in addition, EEG signals were measured during resting, walking, after walking, and after sit-ups. The results showed that a higher pressure (due to 3D CS and 3D WCS) increased the 'Concentration' level and the 'Cognitive load' of brain waves during treadmill walking due to a higher cortex activity level when walking. Differentiation was shown between two compression suits and BS was enhanced during walking on a treadmill; however, the brain waves of 'Relaxation' between two compression suits were significantly different after walking, i.e., 'Relaxation' level of 3D WCS was the highest. Rigorous exercise such as sit-ups was inefficient to distinguish the effect of compression suits on EEG. Participants perceived a higher pressure due to compression suits; however, the wear comfort of two compression suits was maintained. Two compression suits were rated as supportive and helpful during walking. Various EEG parameters such as the indices of 'Relaxation', 'Concentration' and 'Cognitive load' were effective to observe the effect of 3D compression suits on wearers' brain waves during and after walking.

Component and Bench Tests of Polyurethane Hydraulic Reciprocating Seal for Accelerated Life Testing (부품 및 벤치 실험을 통한 폴리우레탄 유압 왕복 실의 가속 실험)

  • Je, Youngwan;Kim, Hansol;Kim, Lyu-Woon;Chung, Koo-Hyun;An, Joong-Hyok;Jeon, Hong-Gyu
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.271-277
    • /
    • 2014
  • Hydraulic reciprocating seals have been widely used to prevent fluid leakage and to provide lubricant film on counter surface in various hydraulic system. The degradation of the seal may cause the catastrophic failure of the hydraulic system. To assess the durability of the seals and the compatibility with counter surface, accelerated life testing (ALT) has been typically employed from industry. However, ALT often takes up to a few months to cause a failure of the seals, and therefore, there is a need to develop more efficient ALT methods. In this work, the degradation characteristics of polyurethane (PU) seals from field test are investigated and they are compared to those from the component and bench tests, with an aim to contribute to the development of ALT method. From the comparison of the cross-sectional profiles of the sealing surface of the PU specimens before and after the tests, both wear and compression set are found to be responsible for degradation of the PU seals. It is also shown that the major wear mechanisms of the PU seals from the field is abrasive wear and formation of pits. The component and bench tests performed in this work are shown to reproduce such wear mechanisms, and therefore, those test methods can be used as an ALT method for PU seals. In particular, the bench test proposed in this work may be effectively utilized to assess the durability and the compatibility of the seals with the counter surface. The results of this work are expected to aid in the design of ALT for PU seal.

Tribological Characteristics with Purity Zirconia of Compression Ring Materials in Piston (피스톤 압축 링 재료의 지르코니아 순도에 따른 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.91-96
    • /
    • 2006
  • The friction and wear properties of ceramics are very important in the applications to engineering ceramic parts such as seal rings, pump parts, automobile meter parts, and so on. In this study, the effects of each other purity on the mechanical and tribological properties of purity zirconia ceramics were investigated. Also in order to determine the effects of sliding distance, sliding speed, contact load, friction coefficient, the amount of worn out material at a certain time, and the prepared composites were measured. Crystalline phases and microstructure were examined with XRD and SEM. The results show that we obtained the good properties of friction coefficient and wear resistance at the purity 99.5% of zirconia. than this of the purity 95% were great at the wear amount of worn out material.

A Three-dimensional Biomechanical Model for Numerical Simulation of Dynamic Pressure Functional Performances of Graduated Compression Stocking (GCS)

  • Liu, Rong;Kwok, Yi-Lin;Li, Yi;Lao, Terence-T;Zhang, Xin;Dai, Xiao-Qun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.389-397
    • /
    • 2006
  • The beneficial effects of graduated compression stockings (GCS) in prophylaxis and treatment of venous disorders of human lower extremity have been recognized. However, their pressure functional performances are variable and unstable in practical applications, and the exact mechanisms of action remain controversial. Direct surface pressure measurements and indirect material properties testing are not enough for fully understanding the interaction between stocking and leg. A three dimensional (3D) biomechanical mathematical model for numerically simulating the interaction between leg and GCS in dynamic wear was developed based on the actual geometry of the female leg obtained from 3D reconstruction of MR images and the real size and mechanical properties of the compression stocking prototype. The biomechanical solid leg model consists of bones and soft tissues, and an orthotropic shell model is built for the stocking hose. The dynamic putting-on process is simulated by defining the contact of finite relative sliding between the two objects. The surface pressure magnitude and distribution along the different height levels of the leg and stress profiles of stockings were simulated. As well, their dynamic alterations with time processing were quantitatively analyzed. Through validation, the simulated results showed a reasonable agreement with the experimental measurements, and the simulated pressure gradient distribution from the ankle to the thigh (100:67:30) accorded with the advised criterion by the European committee for standardization. The developed model can be used to predict and visualize the dynamic pressure and stress performances exerted by compression stocking in wear, and to optimize the material mechanical properties in stocking design, thus, helping us understand mechanisms of compression action and improving medical functions of GCS.