• 제목/요약/키워드: Compression wave

검색결과 270건 처리시간 0.025초

터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구 (Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel)

  • 신창훈;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF

터널에 진입하는 고속전철 주위의 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구 (Numerical study of Three-Dimensional Viscous Flow and Compression Wave Induced by the High Speed Train Entering into a Tunnel)

  • 신창훈;박원규
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.23-31
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the viscous flow field and compression wave around the high speed train which is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation owing to the viscous interaction around the train was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed.

  • PDF

두 연속 터널을 전파하는 압축파의 실험적 연구 (Experimental study of compression waves propagating into two-continuous tunnels)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1294-1302
    • /
    • 1997
  • For the purpose of investigating the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, experiments were carried out using a shock tube with an open end. A great deal of experimental data were obtained and explored to analyze the peak pressures and maximum pressure gradients in the pressure waves. The effects of the distance and cross-sectional area ratio between two-continuous tunnels on the characteristics of the pressure waves were investigated. The peak pressure inside the second tunnel decreases for the distance and cross-sectional area ratio between two tunnels to increase. Also the peak pressure and maximum pressure gradient of the pressure wave inside the second tunnel increase as the maximum pressure gradient of initial compression wave increases.

후드를 이용한 협소 터널 미기압파 감소 효과에 대한 수치적 연구 (Numerical Study of effects on micro-pressure wave reduction by a hood on a narrow tunnel)

  • 윤수환;김병열;구요천;이동호;권혁빈;고태환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.872-877
    • /
    • 2005
  • The train entry into a tunnel generates a strong compression wave in the tunnel. The high amplitude of compression wave causes high pressure gradients that are responsible for both the aural discomfort of passengers and the impulsive acoustical wave called the miro-pressure wave. This paper provides a numerical study on effects of hood for micro'-'pressure wave reduction. An axisymmetric numerical solver, considering the cross sectional area of Korean Tilting Train eXpress, is used for a transient flow field in the tunnel. Results show that the micro-pressure wave is able to be reduced by a hood. In this results, the maximum reduction of micro--pressure wave is shown at 2L(length), 1.35D(diameter) hood around $56\%$ against the non-hood case.

  • PDF

Numerical study on supercavitating flow in free stream with regular waves

  • Li, Da;Lyu, Xujian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.799-809
    • /
    • 2020
  • In this study, the supercavitating flow of a high-velocity moving body near air-water surface is calculated and analyzed based on a commercial CFD software ANSYS Fluent. The effect of regular wave parameters including both wave height and wavelength on the cavitating flow and force characteristics of a body at different velocities is investigated. It is found that the cavity shape, lift coefficient and drag coefficient of the body vary periodically with wave fluctuation, and the variation period is basically consistent with wave period. When the wavelength is much greater than the cavity length, the effect of wave on supercavitation is the alternating effect of axial compression and radial compression. However, when the wavelength varies around the cavity length, the cavity often crosses two adjacent troughs and is compressed periodically by the two wave troughs. With the variation of wavelength, the average area of cavity shows a different trend with the change of wave height.

편측 주행을 고려한 고속철도 터널의 후드 형상에 대한 연구 (A Study of Tunnel Entrance Hood Shape of High-Speed Train with Side Running Effect)

  • 곽민호;구요천;윤수환;노주현;이동호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.483-488
    • /
    • 2009
  • When a train enters into the tunnel with high speed, a compression wave generated inside the tunnel has been studied as a one-dimensional phenomenon. However, one-dimensional approach can't analyze 3-dimensional flow effect in the vicinity of the train body. In this research, so as to overcome this weak point, a prediction method of the wavefront of a compression wave using steady state solution has been used for the parametric study considering 3-dimensional effects of the interactions between trains and tunnels. The effective hood shapes were deduced in both cases of the train's entry into the tunnel on the single track and on a side of the double track. As a result, in case of the train's entry on a side of the double track, the increase of compression wave value propagated to the tunnel inside have appeared compared with the train's entry on the single track. Also, a horizontally convex elliptic hood shape is more effective at the train's entry on a side of the double track for the purpose of a decrease of wavefront gradient of a compression wave.

  • PDF

Effect of Curvature on the Detonation Wave Propagation Characteristics in Annular Channels

  • Lee, Su-Han;Jo, Deok-Rae;Choi, Jeong-Yeol
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.531-535
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channel. A normalized value of channel width to the annular radius was considered as a geometric parameter. Numerical approaches used in the previous studies of detonation wave propagation were extended to the present study with OpenMP parallelization for multicore SMP machines. The major effect of the curved geometry on the detonation wave propagation seems to be a flow compression effect, regardless of the detonation regimes. The flow compression behind the detonation wave by the curved geometry of the circular channel pushes the detonation wave front and results in the overdriven detonation waves with increased detonation speed beyond the Chapmann-Jouguet speed. This effect gets stronger as the normalized radius smaller, as expected. The effect seems to be negligible beyond the normalized radius of 10.

  • PDF

열차가 터널에 진입할 때 발생하는 압축파에 대한 수치해석 - 열차의 출발방법 및 터널과의 거리에 대한 영향 (NUMERICAL STUDY ON THE COMPRESSION WAVE GENERATED BY THE TRAIN ENTERING A TUNNEL)

  • 김사량
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.189-192
    • /
    • 2006
  • The numerical simulations on the train entrering a tunnel were performed by solving unsteady axi-symmetric problems. To reduce the effects of the pressure wave generated by the train starting abruptly, several starting method of the train were also examined. The pressure rise by the train entering a tunnel was compared with other results, and similar value was obtained compared with those of previous studies.

  • PDF

호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구 (A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway)

  • 김선홍;문연오;석진호;김기림;김찬동;유호식
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2008년도 춘계학술발표회 논문집
    • /
    • pp.51-68
    • /
    • 2008
  • 고속열차의 터널 진입시 발생하는 압력파는 압축파의 형태로 터널내부를 전파하여 터널출구에 도달할 때에는 펄스형태의 충격성 압출파로 방사된다. 터널에서 방사된 압축파는 특정한 방향으로 전파되는 것이 아니라 전방향으로 확산되며, 압축파의 크기가 크면 주변 환경에 대한 환경소음 및 진동문제를 야기하게 되는데, 이를 미기압파(Micro Pressure wave)라 한다. 이러한 미기압파는 열차의 주행속도, 터널연장, 터널 및 열차의 단면적 등에 의존하므로 고속철도 터널의 적정단면을 결정하기 위하여 반드시 고려해야 된다. 이에, 본 논문에서는 호남고속철도 단면결정사례를 통하여 단면규모별 수치해석결과에 의한 미기압 기준 만족여부 및 최적단면선정과정을 소개하였다. 호남고속철도의 단면결정사례에서는 경부고속철도 화신 5 터널에서 터널내 압력 및 터널 출구에서의 미기압을 실측하여, 수치시뮬레이션의 입력조건으로 사용된 각종 매개변수 등의 적정성을 비교 검증하였으며, 모형실험을 통하여 합리적인 미기압과 저감대책을 제시하였다.

  • PDF

기체역학적 충격파의 입사에 의해 유도된 초유동헬륨중의 충격파 (Shock Waves in He II induced by a Gas Dynamic Shock Wave Impingement)

  • 양형석
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2002
  • Two modes of shock waves propagating in He II (superfluid helium), this is a compression and a thermal shock waves, were studied experimentally by using superconductive temperature sensors, piezo pressure transducers and Schlieren visualization method with an ultra-high-speed video camera (40,500 pictures/sec). The shock waves are induced by a gas dynamic shock wave impingement upon a He II free surface. It is found that the shock Mach number of a transmitted compression shock wave is up to 1.16, and the shock Mach number of a thermal shock wave coincides well with the second sound velocity under each compressed He II state condition. The temperature rise ratio of an induced thermal shock wave to that of an incident gas dynamic shock wave was found to be very small, as small as 0.003 at 1.80K.

  • PDF