• Title/Summary/Keyword: Compression tests

Search Result 1,573, Processing Time 0.02 seconds

Numerical and analytical investigation of parameters influencing the behavior of shear beams strengthened by CFRP wrapping

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Sakir Yazman;Mohammed Alsdudi;Lokman Gemi;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.217-238
    • /
    • 2023
  • In this study, a parametric study was performed considering material properties of concrete, material properties of steel, the number of longitudinal reinforcement (reinforcement ratio), CFRP ply orientations, a number of layers as variables by using ABAQUS. Firstly, the parameters used in the Hashin failure criteria were verified using four coupon tests of CFRP. Secondly, the numerical models of the beams strengthened by CFRP were verified using five experimental data. Finally, eighty numerical models and eighty analytic calculations were developed to investigate the effects of the aforementioned variables. The results revealed that in the case of using fibrous polymer to prevent shear failure, the variables related to reinforced concrete significantly affected the behavior of specimens, whereas the variables related to CFRP composite have a slight effect on the behavior of the specimens. As a result of numerical analysis, while the increase in the longitudinal tensile and compression reinforcement, load bearing capacity increases between 23.6%-70.7% and 5.6%-12.2%, respectively. Increase in compressive strength (29 MPa to 35 MPa) leads to a slight increase in the load-carrying capacity of the specimens between 4.6% and 7.2%. However, the decrease in the compressive strength (29 MPa to 20 MPa) significantly affected (between 6.4% and 8.1% decrease observed) the behavior of the specimens. As the yield strength increases or decreases, the capacity of specimens increase approximately 27.1% or decrease 12.1%. The effects of CFRP ply orientation results have been obtained as a negligible well approximately 3.7% difference. An increasing number of CFRP layers leads to almost no effect (approximately 2.8%) on the behavior of the specimen. Finally, according to the numerical analysis, the ductility values obtained between 4.0 and 6.9 indicate that the beams have sufficient ductility capacity.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Change of Compressive Deformation Behaviors of Ti-5Mo-xFe Metastable Beta Alloy According to Fe Contents (Fe 함량에 따른 Ti-5Mo-xFe 준안정 베타 합금의 압축 변형거동 변화)

  • Yong-Jae Lee;Jae Gwan Lee;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2023
  • β titanium alloys are widely used in aerospace industry due to their excellent specific strength and corrosion resistance. In particular, mechanical properties of metastable β titanium can efficiently be controlled by various deformation mechanisms such as slip, twinning, and SIM (Stress-Induced Martensite Transformation), making it an ideal material for many industrial applications. In this study, Ti-5Mo-xFe (x=1, 2, 4 wt%) alloy was designed by adding a relatively inexpensive β element to ensure price competitiveness. Additionally, microstructural analysis was conducted using OM, SEM, and XRD, while mechanical properties were evaluated through hardness and compression tests to consider the deformation mechanisms based on the Fe content. SIMT occurred in all three alloys and was influenced by the presence of βm (metastable beta) and beta stability. As the Fe content decreased, the α'' phase increased due to SIMT occurring within the βm phase, resulting in softening. Conversely, as the Fe content increased, the strength of the alloy increased due to a reduction in α'' formation and the contributions of solid solution strengthening and grain strengthening. Moreover, unlike the other alloys, shear bands were observed only in the fracture of the Ti-5Mo-4Fe alloy, which was attributed to differences in texture and microstructure.

Study on Cement-based Grout for Closed-loop Vertical Grout Heat Exchanger (수직 밀폐형 지중열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Choi, Hang-Seok;Kang, Shin-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.107-115
    • /
    • 2010
  • In this paper, the applicability of cement grout bas been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which was exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout was evaluated by performing equivalent hydraulic conductivity tests, on the specimen. in which a pipe locates at the center of the specimen.

Behaviour of Geobag Well System Using Recycled Waste Concrete (폐콘크리트를 이용한 지오백 옹벽의 거동특성 평가)

  • Kim Jin-Man;Lee Dae-Young;Joo Tae-Sung;Lee June-Keun;Paik Young-Shik;Han Sang-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.39-45
    • /
    • 2006
  • A field instrumentation for a recycled waste concrete geobag wall was performed to investigate the performance of the geobag wall, and uniaxial compression tests for a recycled waste concrete geobag were executed in laboratory. The strength of a recycled waste concrete geobag, the lateral earth pressure of a geobag wall, the horizontal deflection of a geobag wall, and the deformation of a backfill in geobag wall are mainly evaluated in this study. Based on the results of analysis on the measurements, it was found that the geobag wall displacement was within the recommendation for mechanically stabilized earth walls. It was also found that the use of a recycled waste concrete in geobag wall provides economical benefit, construction easiness, and good performance.

Compressive Behaviors of Reinforced Lightweight Soil Using Waste Fishing Net (폐어망을 이용한 보강 경량토의 압축거동 특성)

  • Kim, Yun-Tae;Kim, Hong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.25-35
    • /
    • 2006
  • This paper investigates the mechanical characteristics of reinforced lightweight soil (RLS) using waste fishing net. RLS used in this experiment consists of dredged soil taken from construction site of Busan New Port, cement, air foam and waste fishing net. Several series of laboratory tests were performed to compare behavior characteristics between RLS and unreinforced lightweight soil, in which the reinforced effect by waste fishing net on RLS was evaluated. The experimental results of RLS indicated that the stress-strain relationship and the unconfined compressive strength are strongly influenced by the content of waste fishing net. Compressive strength of RLS Increased with the increase in curing time and generally increased by adding waste fishing net, but the amount of increase in compressive strength was not proportional to the content of waste fishing net. In this test, the maximum increase in compressive strength was obtained at 0.25% content of waste fishing net. On the other hand, water content of RLS rapidly decreased up to 7 days of curing time and converged to constant value.

Evaluation of Strength Parameters of Cemented Sand (고결모래의 강도정수 평가)

  • Lee, Hoon-Joo;Choi, Sung-Kun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.91-100
    • /
    • 2008
  • This study proposes the equations evaluating the shear strength of cemented sand by analytical interpretation based on Mohr-Coulomb failure criteria, and verifies them using the results of triaxial and unconfined compression tests. The internal friction angle of cemented sand is identical to that of uncemented one regardless of the stress level, while the cohesion intercept of cemented sand is constant before the breakage of cementation bonds. Therefore, the shear strength of cemented sand can be represented as a summation of the shear strength of uncemented sand and the unconfined compressive strength of cemented sand. In addition, the cohesion intercept of cemented specimen can be expressed as a function of unconfined compressive strength and friction angle. In the transition zone, assuming a constant shear strength, the equations to evaluate shear strength and cohesion intercept of cemented sand are also represented. It is observed that the predicted values using these solutions agree well with the experimental results. The experimental results also show a linear relationship between the unconfined compressive strength and the breaking point of cementation bonds.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

Safety Evaluation of Carbon Fiber/Epoxy Composite Link Using Micromechanics of Failure Criterion (미시역학적 파손 기준을 이용한 탄소섬유/에폭시 복합재 링크의 안전성 평가)

  • Jae Ho Cha;Sung Ho Yoon
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.154-161
    • /
    • 2023
  • This study explored the feasibility of replacing a metal link with a carbon fiber/epoxy composite link and assessed its capacity to withstand a given load condition using failure criteria. The micromechanics of failure (MMF) criterion was employed to predict the failure mode of the composite material, and mechanical tests were conducted to obtain reference strength parameters for MMF. The findings revealed that the stress distribution was concentrated near the hole, and weaknesses were found around the hole and at the end of the link under bending conditions. Based on the failure index, matrix tensile failure was predicted at the end of the link, and fiber compression failure occurred near the hole. The methods and results obtained from this study can provide valuable guidelines for assessing the safety of composite materials under specific load conditions when replacing metal parts with carbon fiber/epoxy composites to achieve weight reduction.

Effect of WC Particle Size on the Microstructure, Mechanical and Electrical Properties of Ag/WC Sintered Electrical Contact Material (Ag/WC 소결 전기 접점 소재의 미세조직, 기계적 및 전기적 특성에 미치는 WC 입자 크기의 영향)

  • Soobin Kim;So-Yeon Park;Jong-Bin Lim;Soon Ho Kwon;Kee-Ahn Lee
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.242-248
    • /
    • 2023
  • The Ag/WC electrical contacts were prepared via powder metallurgy using 60 wt% Ag, 40 wt% WC, and small amounts of Co3O4 with varying WC particle sizes. After the fabrication of the contact materials, microstructure observations confirmed that WC-1 had an average grain size (AGS) of 0.27 ㎛, and WC-2 had an AGS of 0.35 ㎛. The Ag matrix in WC-1 formed fine grains, whereas a significantly larger and continuous growth of the Ag matrix was observed in WC-2. This indicates the different flow behaviors of liquid Ag during the sintering process owing to the different WC sizes. The electrical conductivities of WC-1 and WC-2 were 47.8% and 60.4%, respectively, and had a significant influence on the Ag matrix. In particular, WC-2 exhibited extremely high electrical conductivity owing to its large and continuous Ag-grain matrix. The yield strengths of WC-1 and WC-2 after compression tests were 349.9 MPa and 280.7 MPa, respectively. The high yield strength of WC-1 can be attributed to the Hall-Petch effect, whereas the low yield strength of WC-2 can be explained by the high fraction of high-angle boundaries (HAB) between the WC grains. Furthermore, the relationships between the microstructure, electrical/mechanical properties, and deformation mechanisms were evaluated.