• Title/Summary/Keyword: Compression angle

Search Result 579, Processing Time 0.027 seconds

Hemifacial Spasm Caused by Epidermoid Tumor at Cerebello Pontine Angle

  • Choi, Seok-Keun;Rhee, Bong-Arm;Lim, Young-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.3
    • /
    • pp.196-198
    • /
    • 2009
  • Hemifacial spasm (HFS) is almost always induced by vascular compression but in some cases the cause of HFS are tumors at cerebellopontine angle (CPA) or vascular malformations. We present a rare case of hemifacial spasm caused by epidermoid tumors and the possible pathogenesis of HFS is discussed. A 36-year-old female patient presented with a 27-month history of progressive involuntary facial twitching and had been treated with acupuncture and herb medication. On imaging study, a mass lesion was seen at right CPA. Microvascular decompression combined with mass removal was undertaken through retrosigmoid approach. The lesion was avascular mass and diagnosed with an epidermoid tumor pathologically. Eventually, we found a offending vessel (AICA : anterior inferior cerebellar artery) compressing facial nerve root exit zone (REZ). In case of HFS caused by tumor compression on the facial nerve REZ, surgeons should try to find an offending vessel under the mass. This case supports the vascular compression theory as a pathogenesis of HFS.

Improvement of Color Temperature Uniformity of Integrated Optic Lens Type LED Packaged using Compression Molding Method (가압성형 방식을 사용한 렌즈 일체형 LED 패키지의 색온도 균일성 향상에 관한 연구)

  • Kim, Wan-Ho;Kang, Young-Rae;Jang, Min-Suk;Joo, Jae-Young;Song, Sang-Bin;Kim, Jae-Pil;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • Optical characteristics including the view angle and color temperature uniformity of LED packages with an integrated lens fabricated by compression molding method are investigated according to lens shape, lens materials, and phosphor coating methods. Four types of lens shape are designed and their optical output power dependence on the refractive index of silicone encapsulant are evaluated. Also, spatial color temperature uniformities of packages fabricated with different phosphor coating methods-direct coating on a chip vs. uniformly mixed with silicone encapsulant- are compared at various view angles. As the result, it is found that phosphor coating method is more effective on color temperature uniformity than lens shape. The maximum color temperature difference of a package with direct coating of phosphor on a chip is 1,340K according to the view angle at the color temperature of 5,000K, and that of a package with uniformly mixed phosphor is 250K, which indicates 1,090K improvement of color uniformity for the latter case.

Analysis of trunk angle and muscle activation during chest compression in 119 EMTs (가슴압박시 구급대원의 체간 각도와 근활성도 분석)

  • Shin, Dong-Min;Lee, Chang-Sub;Kim, Seung-Yong;Kim, Chang-Kook;Hong, Eun-Jeong;Lee, Young-Chul;Choi, Ga-Ram;Kim, Gyoung-Yong;Jang, Mun-Sun;Kim, Jeong-Hee;Han, Boong-Ki;Lee, Jong-Kun;Tak, Yang-Ju
    • The Korean Journal of Emergency Medical Services
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2014
  • Purpose: We aimed to investigate trunk angle and muscle activation of the extremity and back to evaluate the effect of chest compression on work-related musculoskeletal disorders in 119 emergency medical technicians (EMTs). Methods: Eighteen 119 EMTs performed 2-minute chest compression without interruption on a cardiopulmonary resuscitation manikin, during which we measured changes in the trunk and shoulder joint angles, muscle activation (triceps brachii, biceps brachii, erector spinae, gluteus maximus, pectoralis major, rectus abdominis, and rectus femoris) and chest compression accuracy. Results: The decrease in trunk angle by trunk muscle activation was the highest in event 2, the major direction of chest compression. Both shoulder joint angles had no significant difference. Muscle activation of the triceps brachii (p < .01), biceps brachii (p < .05), rectus abdominis (p < .05) and rectus femoris (p < .01) significantly increased during the compression phase compared with the decompression phase, with the rectus femoris showing an increase of 19%. Muscle activation of the erector spinae significantly increased in the decompression phase compared with the compression phase (p < .01). Conclusion: 119 EMTs mainly use the triceps brachii, biceps brachii and pectoralis major muscles during chest compression.

Analysis of Compression Ignition Combustion in a Schnurle-Type Gasoline Engine - Comparison of performance between direct injection and port injection systems -

  • Kim, Seok-Woo;Moriyoshi, Yasuo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1451-1460
    • /
    • 2004
  • A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

Treatment of Reverse Oblique Trochanteric Fracture with Compression Hip Screw (대퇴골 전자부 역사상 골절의 압박고 나사를 이용한 치료)

  • Kim, Dong-Hui;Lee, Sang-Hong;Ha, Sang-Ho;You, Jae-Won
    • Journal of Trauma and Injury
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Purpose: To investigate the results of treatment of reverse oblique trochanteric fractures with compression hip screw. Methods: We reviewed the results of 12 cases of reverse oblique trochanteric fracture treated with compression hip screw from January 2000 to December 2006 which could be followed up for more than 1 year. The mean follow up period was 26 months (15~40). The mean age was 48 years old. Injury mechanism was composed of 6 cases of traffic accident and 6 cases of fall down. 8 persons were man. We investigated the union time, degree of neck-shaft angle change, amount of sliding of compression hip screw, complications, functional and clinical results. Results: 10 cases were united and the mean union time were 5 months (3~8). The mean neck-shaft angle change was 3.5 degrees (0~12). The amount of sliding of compression hip screw was 8.9 mm (2~24). There were six coxa vara, six leg due to coxa vara shortening, two nonunion, and one superficial infection. Unsatisfactory results of Jensen's social function score and Parker and Palmer's mobility score were studied. Conclusion: The results of treatment of reverse oblique trochanteric fractures with compression hip screw were relatively unsatisfied.

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

The Change of Mechanical Properties with Forming Conditions of Thermoplastic Composite in Compression Molding (열가소성 복합재료의 압축성형조건에 따른 기계적 특성 변화)

  • Lee, Jung-Hui;Lee, Ho-Eon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1416-1422
    • /
    • 2001
  • The objective of this work was to characterize mechanical properties of thermoplastic composites with various forming conditions in compression molding. Randomly oriented long glass fiber reinforced polypropylene(PP) was used in this work. The composite materials contained 20%, 30%, and 40% glass fiber by weight. Compression molding was conducted at various mold temperatures and charge sizes. The temperatures on the mold surface and at the material in the mid-plain were monitored during the molding. Differential Scanning Calorimeter was used to measure crystallinity at both in-side and out-side of the sheet material. Crystallinity at each temperature was also measured by X-ray diffractometer. Dimensional stability was studied at various conditions with the spring forward angle. Among the processing parameters, the crystallization time at the temperature above 130$^{\circ}C$, was found to be the most effective. Spring-forward angle was reduced and the tensile modulus was increased as the mold temperature increased.

The Fundamental Study on Generation of High Turbulence at Vicinity of Ignition Timing (점화시기 근방의 고난류 생성을 위한 기초연구)

  • Hong, Jae-Ung;Song, Yeong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.275-283
    • /
    • 1996
  • The turbulence in the engine cylinder is generated by intake pressure and inertia effects during intake stroke, and is generated and decreased by piston compression effect during the compression stroke. The classified needed to generate high turbulence flow at vicinity of ignition timing. Therefore, A single-shot Rapid Intake Compression Expansion Machine (RICEM), which is able to realize the intake, compression, expansion or intake-compression stroke under high piston speed respectively, was manufactured and evaluated in order to find methods to generate high turbulence at around spark timing. It was found that the characteristics of RICEM such as reapperance, leakage, piston displacement with crank angle was corresponding to those of real engine and RICEM simulates not only high temperature and high pressure field but also flow patterns of the actual engine by increasing of pressure in intake line.

Fracture of Multiple Flaws in Uniaxial Compression (일축압축 상태하 다중 불연속면의 파괴에 대한 연구)

  • 사공명;안토니오보베
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.301-310
    • /
    • 2001
  • Gypsum blocks with sixteen flaws have been prepared and tested in uniaxial compression. Results from these experiments are compared with observations from the same material with two and three flaws. The results indicate that the cracking pattern observed in specimens wish multiple flaws is analogous to the pattern obtained in specimens with two and three flaws such as initiation and propagation of wing, and secondary cracks and coalescence. Wing cracks initiate at an angle with the flaw and propagate in a stable manner towards the direction of maximum compression. Secondary cracks initiate and propagate in a stable manner. As the load is increased, secondary cracks may propagate in an unstable manner and produce coalescence. Two types of secondary cracks are observed: quasi-coplanar, and oblique secondary cracks. Coalescence is produced by the linkage of two flaws: wing and/or secondary cracks. From the sixteen flaws test, four types of coalescence are observed. Observed types of coalescence and initiation stress of wing and secondary crackle depend on flaw geometries, such as spacing, continuity, flaw inclination angle, ligament angle, and steppings.

  • PDF