• Title/Summary/Keyword: Compression Molding Method

Search Result 84, Processing Time 0.029 seconds

Improvement of Color Temperature Uniformity of Integrated Optic Lens Type LED Packaged using Compression Molding Method (가압성형 방식을 사용한 렌즈 일체형 LED 패키지의 색온도 균일성 향상에 관한 연구)

  • Kim, Wan-Ho;Kang, Young-Rae;Jang, Min-Suk;Joo, Jae-Young;Song, Sang-Bin;Kim, Jae-Pil;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • Optical characteristics including the view angle and color temperature uniformity of LED packages with an integrated lens fabricated by compression molding method are investigated according to lens shape, lens materials, and phosphor coating methods. Four types of lens shape are designed and their optical output power dependence on the refractive index of silicone encapsulant are evaluated. Also, spatial color temperature uniformities of packages fabricated with different phosphor coating methods-direct coating on a chip vs. uniformly mixed with silicone encapsulant- are compared at various view angles. As the result, it is found that phosphor coating method is more effective on color temperature uniformity than lens shape. The maximum color temperature difference of a package with direct coating of phosphor on a chip is 1,340K according to the view angle at the color temperature of 5,000K, and that of a package with uniformly mixed phosphor is 250K, which indicates 1,090K improvement of color uniformity for the latter case.

Application of Compression Molding to Determination of Binder System for Low Pressure Injection Molding (열간압축성형에 의한 저압사출성형 결합제 시스템의 결정)

  • 김상우;이해원;송휴섭;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.823-828
    • /
    • 1994
  • Dispersion condition of Si3N4 powder in molten wax was established by comparing relative viscosity of mixture with 20 vol% solids loading, while the evaluation of compression-molded sample was demonstrated as an effective method for developing a binder system for injection molding. The best dispersion of Si3N4 powder in molten wax was achieved when Si3N4 powder was treated with 5% stearic acid, and the critical powder volume fraction was determined to be about 0.51 from density measurement of compression-molded samples. Samples containing polar secondary binder showed markedly improved green strength, higher thermal expansion and increased wicking rate in the early stage.

  • PDF

Molding Method Determination of Cushion for Improving Reliability of the Rotation Driving System (회전 구동부의 신뢰성 개선을 위한 쿠션 성형 방법의 결정)

  • Nam, Yoonwook;Son, Kijoong;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • Purpose: This article provides an efficient cushion molding method for improving reliability of the rotation driving system. Method: Allowable stress level for cushion is calculated by using physical characteristics of the rotation driving system. In addition, various test units are manufactured and used to conduct the rebound resilience, the burst pressure and the alternating load test. Results: Actual allowable stress level and test results of the rebound resilience, the burst pressure and the alternating load test are provided. Conclusion: The cushion manufactured by the compression molding method gives more preferable characteristics for improving the reliability of the rotation driving system.

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF

Development of the Composite Bus Housing Panel Using RTM (RTM 을 이용한 복합재료 Bus Housing Panel의 개발)

  • 김포진;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.189-192
    • /
    • 2001
  • Resin transfer molding process has been widely used in the automobile industry, because the product with large area can be manufactured easily and the cost for the manufacturing is lower than that of compression molding and hand lay up method. Since RTM process is suitable for large bus housing panels, in this work, the composite housing panel was manufactured by RTM process and the mechanical properties, surface quality and the condition of manufacturing process were studied.

  • PDF

A Study on Fiber Orientation of Compression-Molded Rib type Products (압축성형된 리브형 성형품의 섬유배향에 관한 연구)

  • Jo S. H.;Oh Y. J.;Lee K. S.;Yoon S. U.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.313-318
    • /
    • 2001
  • Compression molding is widely used process for the industrial forming of fiber reinforced plastic articles. Its applications are of an extreme variety and the products range from large parts, such as used in the automotive industry to much smaller objects. In this paper, distribution of fiber orientation by the image processing method for rib type compression molded products of each fiber content is measured. And the effects of fiber content, product size on the orientation state are discussed.

  • PDF

Adaptation accuracy and mechanical properties of various denture base resins: a review (다양한 레진 의치상의 적합도와 기계적 특성)

  • Lee, Jung-Hwan;Lee, Chung-Jae;Lee, Hae-Hyoung
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.747-756
    • /
    • 2019
  • This paper reviews the adaptation accuracy and mechanical properties of currently used denture processing systems with base resin materials and introduces the latest research on the development of antimicrobial denture base resins. Poly(methyl methacrylate) has been successfully used as a dental denture base resin material by the compress-molding method and heat polymerization for a long time, but recently, new processing techniques, injection molding-methods or fluid-resin technique are also used for fabricating denture base. However, studies indicated that there was no difference between the injectionmolding and the conventional compression-molding method in terms of adaption accuracy of denture base. The fluid-resin fabrication and one injection-molding systems exhibited better adaptation accuracy than the other processing methods. Resin denture bases in the oral cavity may undergo midline fractures due to flexural fatigue from repeated masticatory loading. For those patients, impact resistant denture base resins are recommended to prevent denture fracture during service. Thermoplastic denture base resins can be helpful for patients suffering from allergic reaction to resin monomers with a soft-fit, however, thermoplastic resins with low stiffness can irritate gum tissues and accelerate abnormal alveolar ridge resorption. Moreover, due to low chemical durability in oral cavity, those should be used for a limited period of time.

  • PDF

Finite Element Simulation of Material Flow and Weld Line Formation in SMC Compression Molding (SMC 압축성형의 소재유동과 겹침선 형성에 관한 유한요소 해석)

  • Hahn, Young-Won;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 1996
  • SMC(Sheet Molding Compound) is made of unsaturated polyester resin and other additives reinforced with randomly distributed chopped fiberglass strands. Because of its higher stiffness per unit mass, SMC was used as a substitute for steel for automotive steel outer panels. Thus, understanding of flow characteristics during fabrication of SMC is of importance since the formation of weld line depends on material flow. In the present study, SMC compression molding simulations in the flat and T-shape molds were accomplished. During simulations, the preferential the preferential flow occurred at the low mold closing speed while plug flow was observed for the higher mold closing speed. When the preferential flow was observed, the weld line was seen at the final stage. For simulations, rigid-viscoplastic finite element method was applied. Self-contact algorithm was also applied in order to predict the formation of the weld line. Simulation results were compared to the experimental results available in the literature.

Experimental Study of the Aspheric-plano Lens Fabrication using Compression Glass Molding

  • Ryu, Seong-Mi;Kim, Hye-Jeong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.237-242
    • /
    • 2008
  • The effects of the process parameters in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The molding conditions were optimized with respect to the form accuracy (PV) (the response variable) of the molded lens. The experimental conditions were obtained by employing a factorial design method. From the analysis of variance (ANOVA) and P-value (significance level), the slow cooling rate was found to affect the response variable most significantly. The lens molded under the optimum molding condition showed a transcription ratio of 93.4%.

A Study on Formation of Ejector-Pin Hollowness in Injection Molding (사출성형에서 밀핀 흔적의 형성에 관한 연구)

  • Hwang, Geum-Jong;Lee, Hui-Gwan;Yang, Gyun-Ui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.29-34
    • /
    • 2002
  • This paper presents formation of ejector-pin hollowness in injection molding. Injection molding process is widely used in production of plastic part for good dimensional accuracy and high productivity. However, the injection molding leaves ejector-pin hollowness on pal, which causes bad part surface and quality. Dimensions and profiles of ejector-pin hollowness are measured for formation or ejector-pin hollowness. The formation of ejector-pin hollowness is traced with dimensions and profiles of ejector-pin hollowness. The compression force and moment cause ejector-pin to form hollowness on part surface.