• Title/Summary/Keyword: Compression Ignition

Search Result 324, Processing Time 0.024 seconds

The prediction of performance, exhaust emissions and EGR effect of a spark ignition engine by cycle simmulation and experimental method (스파아크 점화기관의 사이클 시뮬레이션과 실험적 방법에 의한 성능, 배출가스, EGR효과의 예측에 관한 연구)

  • 정용일;성낙원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.31-42
    • /
    • 1986
  • The prediction of performance, exhaust emissions and EGR effect is made by the SI engine cycle simulation. In this simulation several models are employed - two zome, thermodynamic combustion, mass fraction burned, heat transfer, chemical equilibrium, chemical kinetics for NOx, laminar flame speed for ignition delay. The chemical species in burned gas considered are 13 species-CO$_{2}$, CO, $O_{2}$, H$_{2}$O, H$_{2}$,OH, H, O, N$_{2}$, NO$_{2}$, N, Ar - and the cylinder pressure, burned and unburned zone temperature and composition of gas are calculated at each crank angle through the compression, ignition delay, combustion and expansion process. To check the validity of the model, experimental study is done for measuring emissions, combustion pressure and engine output. The predicted values for pressure and emissions show qualitative agreement with the measured data and the EGR effect also shows similar tendency.

  • PDF

A Study on Mixture Composition and Combustion Characteristics in Gasoline Engine (가솔린 기관의 혼합기 조성과 연소 특성에 관한 연구)

  • Kim, Gi-Bok;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • Recently the automobile engine has been developed in achieving the high performance, fuel economy, and emission reduction. In a conventional spark ignition engine the fuel and air are mixed together in the intake system, inducted through the intake valve into the cylinder, and then compressed. Under normal operating conditions, the combustion is initiated towards the end of the compression stroke at the spark plug by an electric discharge. Following inflammation, a flame develops and propagates through this premixed fuel-air mixture. Therefore the state of mixture is very important in the combustion and emission characteristics. In this study the combustion and emission characteristics were tested and analyzed with changing the mixture composition and engine operating parameters in order to improve the combustion and performance in engine.

The Experimental Study on the Low-temperature Combustion Characteristics of DME Fuel in a Compression Ignition Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.190-196
    • /
    • 2017
  • The aim of this work is to investigate the combustion and exhaust emission characteristics of low-temperature combustion (LTC) at various EGR test conditions using a single cylinder common-rail diesel engine. In high EGR rate combustion mode with DME fuel, 30% (${\Phi}=0.61$) and 50% (${\Phi}=0.86$) of EGR were respectively examined, and then the combustion, exhaust emissions, nano-particle characteristics of each cases were measured. From these results, it revealed that The ignition delay and combustion duration are prolonged as the increase of EGR rate. In addition, at an advanced injection timing (BTDC $30^{\circ}$), ignition delays were fairly increased because the dilution effect of EGR and also low charge in-cylinder temperature created a lean mixture, thus decreased the peak release rate.

Diagnosis of Fire-Causes by using Expert System technique (전문가시스템 기법을 이용한 화재 원인진단)

  • 정국삼;김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1992
  • This paper presents a study on application of expert system technique for the diagnosis of fire-causes in plants. A need is recognized for new methods to diagnose exactly the causes of fires without the help of the human experts. To cope with the difficulty, the expert system techiuque is applied to this area. The expert system suggested in this paper is developed to infer the causes of fires(or, ignition source ) by using the information drawn from the circumstances in fire. For the convenience of inference, ignition sources we classified into eight types ; elecoic spark, adiabatic compression, welding spark, material of high temperature, impact and friction, spontaneous ignition, naked fire, and static electricity. The knowledge base is composed of the rule base and dynamic database, which contain the rules and facts obtained by the expenence in this area, respectively. Both depth-first search and backward chaining schemes are used in reasoning process. This expert system is written in an artificial intelligence language "PROLOG", and its availability is demonstrated through the case study.

  • PDF

A Numerical Study of Combustion Characteristics for HCCI Engine with Detailed Diesel Surrogate Chemical Mechanism (Diesel Surrogate 상세 반응 기구를 이용한 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • Homogeneous charge compression ignition(HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, combustion characteristics of HCCI engine with suggested diesel surrogate(heptane/toluene mixture fuel) reaction mechanism were numerically investigated by heptane/toluene mixture ratio and EGR ratio. As results, the ignition timing became faster with increasing of heptane, and an initial oxidation and the ignition timing of the mixture fuel were affected by heptane and toluene, respectively.

Simulation of a power cycle for a single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 동력사이클의 시뮬레이션)

  • 조양수;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-61
    • /
    • 1983
  • In this paper the simulation of a thermodynamic power cycle for a 4-stroke, single-cylinder, spark-ignition engine was studied. In this simulation the cylinder volume was restricted to two zones, a burnt and an unburnt zone, and the convective heat transfer from cylinder contents to surroundings was considered. The chemical species in burnt gas considered was 12 species including H$_{2}$O, H$_{2}$, OH, H, N$_{2}$, NO, N, CO$_{2}$, CO, $O_{2}$, O and Ar. Using this model, computer program for compression, ignition and expansion processes was composed and pressure, temperature and composition of cylinder gas at each crank angle were computed. The composition of CO$_{2}$, CO, $O_{2}$ in the burnt gas when exhaust valve opens, the maximum temperature, the maximum flame speed and the combustion duration were also computed as a function of equivalence ratio. The relation between burnt mass fraction and burnt volume fraction was also computed.

  • PDF

Emission Characteristics of HCNG Engine with Compression Ratio Change (압축비 변화에 따른 HCNG 엔진의 배기 특성)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.106-112
    • /
    • 2013
  • Compression ratio is an important factor affecting engine performance and emission characteristics since thermal efficiency of spark ignition engine can be theoretically improved by increasing compression ratio. In order to evaluate the effect of compression ratio change in HCNG engine, natural gas engine was employed using HCNG30 (CNG 70 vol%, hydrogen 30 vol%). Combustion and emission characteristics of CNG and HCNG fuel was analyzed with respect to the change of compression ratio at each operating condition. The results showed that thermal efficiency improved and $CH_4$, $CO_2$ emission decreased with the increase in compression ratio while $NO_x$ emissions were decreased at a certain excess air ratio condition. Higher thermal efficiency and further reduction of exhaust emissions can be achieved by the increase of compression ratio and the retard of spark timing.

Effects of Fuel Composition and Pressure on Autoignition Delay of Biomass Syngas (혼합비율 및 압력 변화가 바이오매스 합성가스의 점화지연 시간에 미치는 영향)

  • Shim, Tae Young;Kang, Ki Joong;Lu, Xingcai;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.945-952
    • /
    • 2015
  • The autoignition characteristics of biosyngas were investigated both numerically and experimentally. The effects of the temperature, gas composition, and pressure on the autoignition characteristics were evaluated. A shock tube was employed to measure the ignition delay times of the biosyngas. The numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to validate the experimental results and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with an increase in the hydrogen fraction in the mixture. Under most temperature conditions, the ignition delay time decreased with a pressure increase. However, the ignition delay time increased with an increase in pressure under relatively low temperature conditions.

An Investigation of a Stratified Charge Mixture's HCCI Combustion Processes Using a Rapid Compression Machine (급속압축장치를 이용한 HCCI기관에서 층상혼합기에 의한 압력상승률의 저감효과에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • The introduction of mixture heterogeneity has been considered to be one of the ways to avoid knocking, as it reduces the pressure rise rate in HCCI Combustion. The purpose of this research was to investigate the effects of heterogeneity, in particular thermal stratification and fuel strength stratification, on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in the Combustion Chamber of a Rapid Compression Machine with three kinds of pre-mixture, each with different properties. The stratified charge mixture was adiabatically compressed, throughout which cylinder gas pressure and two-dimensional chemiluminescence images were measured and analyzed.

The Effect of Hydrogen Enrichment on Exhaust Emissions and Thermal Efficiency in a LPG fuelled Engine

  • Park, Gyeung-Ho;Han, Sung-Bin;Chung, Yon-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1196-1202
    • /
    • 2003
  • The concept of hydrogen enriched LPG fuelled engine can be essentially characterized as low emissions and reduction of backfire for hydrogen engine. The purpose of study is obtaining low-emission and high-efficiency in LPG engine with hydrogen enrichment. In order to determine the ideal compression ratio, a variable compression ratio single cylinder engine was developed. The objective of this paper is to clarify the effects of hydrogen enriched LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to minimize abnormal combustion. To maintain equal heating value, the amount of LPG was decreased, and hydrogen was gradually added. In a similar manner, the relative air-fuel ratio was increased from 0.8 to 1.3 in increment of 0.1, and the ignition timing was controlled to be at MBT each case.