• Title/Summary/Keyword: Compression Force

Search Result 640, Processing Time 0.023 seconds

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Study on Peridynamic Interlayer Modeling for Multilayered Structures (가상 절점을 이용한 적층 구조물의 페리다이나믹 층간 결합 모델링 검토)

  • Ahn, Tae Sik;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.389-396
    • /
    • 2017
  • Peridynamics has been widely used in the dynamic fracture analysis of brittle materials. Recently, various crack patterns(compact region, floret, Hertz-type crack, etc.) of multilayered glass structures in experiments(Bless et al. 2010) were implemented with a bond-based peridynamic simulation(Bobaru et al.. 2012). The actual glass layers are bound with thin elastic interlayer material while the interlayer is missing from the peridynamic model used in the previous numerical study. In this study, the peridynamic interlayer modeling for the multilayered structures is proposed. It requires enormous computational time and memory to explicitly model very thin interlayer materials. Instead of explicit modeling, fictitious peridynamic particles are introduced for modeling interlayer materials. The computational efficiency and accuracy of the proposed peridynamic interlayer model are verified through numerical tests. Furthermore, preventing penetration scheme based on short-range interaction force is employed for the multilayered structure under compression and verified through parametric tests.

Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading (하중조건과 고온에 의한 고강도 경량 콘크리트의 역학적 특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Choe, Gyeong-Cheol;Park, Hyun-Gil;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2011
  • It is very important to experimentally evaluate concrete behavior at elevated temperature because aggregates make up approximately 80 percent of volume in concrete. In this study, an experiment to evaluate mechanical properties of normal weight and light weight concrete of 60 MPa was conducted. Based on loading level of 0, 20 and 40 percent, the tests of 28 days compressive strength, elastic modulus, thermal strain, total strain, and transient creep using ${\phi}100{\times}200mm$ cylindrical specimens at elevated temperature were performed. Then, the results were compared with CEB (Committes Euro-international du Beton) model code. The results showed that thermal strain of light weight concrete was smaller than normal weight concrete. Also, the results showed that compressive strength of light concrete at $700^{\circ}C$ was higher than normal weight concrete and CEB code, similar to that obtained at ambient temperature. Transient creep developed from loading at a critical temperature of $500^{\circ}C$ caused the concrete strains to change from expansion to compression. The transient creep test result showed that internal force was high when the ratio of shrinkage between concrete and aggregate was more influential than thermal expansion.

Development of Frozen Vegetable Groundnut Product for Year-round Supply (주년공급을 위한 풋땅콩 냉동가공기술 개발)

  • 손영구;황종진;김선림;허한순;박장환;김석동;이춘기
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.326-330
    • /
    • 1998
  • Freeze storage technique is widely used for food processing to keep freshness and quality of the product. This technique was applied to fresh, unshelled groundnut to develop a new type of product which could maintain fresh taste and nutritive values even after several months of storage. The groundnut varieties, Daepungtangkong, Daekwangtangkong and Sindaekwangtangkong were grown at the experimental field of NCES in 1996. Immatured pods or groundnut were harvested around 20 to 3o days before full maturity, washed, and steamed at 100$^{\circ}C$ for 5 min. to stop enzyme activity. After vacuum packing (at -760mmHg for 10 min.) with 0.08mm polyvinyldichloride film, the pods were immediately frozen at -70$^{\circ}C$ for 24h and transfered at -20$^{\circ}C$ for long-term storage. Physico-chemical properties of frozen vegetable groundnut were investigated at 2 months after storage and compared to those of conventionally dried groundnut. After 2 months storage, the thawed kernels were very palatable with softness and fresh taste. Acid value and hardness (measured as the compression force on the probe of a texture analyzer) were much lower in frozen vegetable groundnut than those in the air-dried ones. Presence of free sugars is one of the important factors affecting groundnut taste, and the free sugar contents were considerably decreased in the frozen vegetable groundnut compared to freshly harvested groundnut. But in dried groundnut no free sugar was detected.

  • PDF

Surface Micelle Formation of Polystyrene-b-Poly(2-vinyl pyridine) Diblock Copolymer at Air-Water Interface

  • Park, Myunghoon;Bonghoon Chung;Byungok Chun;Taihyun Chang
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.127-133
    • /
    • 2004
  • We have studied the surface micelle formation of polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) at the air-water interface. A series of four PS-b-P2VPs were synthesized by anionic polymerization, keeping the PS block length constant (28 kg/㏖) and varying the P2VP block length (1, 11, 28, or 59 kg/㏖). The surface pressure-area ($\pi$-A) isotherms were measured and the surface morphology was studied by atomic force microscopy (AFM) after Langmuir-Blodgett film deposition onto silicon wafers. At low surface pressure, the hydrophobic PS blocks aggregate to form pancake-like micelle cores and the hydrophilic P2VP block chains spread on the water surface to form a corona-like monolayer. The surface area occupied by a block copolymer is proportional to the molecular weight of the P2VP block and identical to the surface area occupied by a homo-P2VP. It indicates that the entire surface is covered by the P2VP monolayer and the PS micelle cores lie on the P2VP monolayer. As the surface pressure is increased, the $\pi$-A isotherm shows a transition region where the surface pressure does not change much with the film compression. In this transition region, which displays high compressibility, the P2VP blocks restructure from the monolayer and spread at the air-water interface. After the transition, the Langmuir film becomes much less compressible. In this high-surface-pressure regime, the PS cores cover practically the entire surface area, as observed by AFM and the limiting area of the film. All the diblock copolymers formed circular micelles, except for the block copolymer having a very short P2VP block (1 kg/㏖), which formed large, non-uniform PS aggregates. By mixing with the block copolymer having a longer P2VP block (11 kg/㏖), we observed rod-shaped micelles, which indicates that the morphology of the surfaces micelles can be controlled by adjusting the average composition of block copolymers.

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Manufacturing of Hemp Seed Flake by Using Extrusion Process (압출성형공정을 이용한 삼 종자 후레이크 제조)

  • Tie, Jin;Gu, Bon-Jae;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • Proximate composition of whole hemp seed, paste viscosity of whole hemp seed pellets, bulk density, color, compression force, water solubility and absorption index and bowl life of whole hemp seed flakes manufactured by extrusion process were determined to evaluate whole hemp seed as flake additive. Extrusion process conditions were 35% of moisture content and 90, 100 and 110$^{\circ}C$ of barrel temperature. Content of moisture content, crude protein, crude fat, crude ash from whole hemp seed were 5.67${\pm}$0.02%, 25.93${\pm}$0.16%, 28.21${\pm}$0.56% and 7.70${\pm}$0.08%, respectively. The pellets hemp seed at 100 or 110$^{\circ}C$ had higher paste viscosity as compared to those pellet at 90$^{\circ}C$. The bulk density values of all hemp seed flakes were between 0.24 to 0.43 g/mL, depending on the barrel temperatures. The hardness of flake increased with decreasing percentage of hemp seed in flakes. An increase in barrel temperature from 90$^{\circ}C$ to 110$^{\circ}C$ resulted in increase of WSI and decrease of WAI. The bowl life of hemp seed flakes was increased from 5.8 to 15.5 min with the decrease in percentage of hemp seed. The highest overall quality was showed in flake added with 20% of hemp seed.

Behavior and Improvement of Construction Crack occurred on Anchorage of PSC-edge Girder Rahmen Bridge (PSC-Edge 거더 라멘교의 정착부에 발생한 시공 균열 거동과 개선)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.569-576
    • /
    • 2019
  • PSC-Edge Rahmen Bridge makes low thickness and long span by introducing prestressed force to the edge girder and reducing positive moment. In the bridge, diagonal tension cracks occurred in the direction of $45^{\circ}$ to outer side of the girder after the temporary bent supported on the lower part of the upper slab and the secondary strand is tensioned on the girder. Researches on stress distribution and burst crack behavior of pre-stress anchorage has been conducted, it is difficult to analyze an obvious cause due to difference between actual shape and boundary condition. This study performed 3D frame analysis with additional boundary condition of temporary bent, the maximum compression stress occurred in the girder and there was a limit to identify the cause. It performed 3D Solid analysis with LUSAS 16.1 and the maximum principal tensile stress occurred at the boundary between the girder and the slab. As analyzing required reinforcement quantity at obtuse angle of the girder with the maximum principal tensile stress and directional cosine, reinforcement quantity was insufficient. Additional bridges have increased reinforcement quantity and extended area and crack was not occurred. It is expected that cracks on the girder during construction could be controlled by applying the proposed method to PSC-Edge Rahmen Bridge.