• Title/Summary/Keyword: Compression Force

Search Result 653, Processing Time 0.026 seconds

Colorimetric Effect of Au Nanoparticle Chain/Polymer Film under Mechanical Stress and Gas Pressure

  • Shim, Gowoon;Eom, Kiryung;Lee, Gyuyeon;Seo, Hyungtak
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • Gas detection is necessary for various reasons, including the prevention of gas leakages and the creation of necessary environmental conditions. Among the gas detection methods, leakage of gas can be confirmed using materials that undergo color changes that are easily distinguished by the naked eye. Metal nanoparticles (NPs) experience variations in their absorption wavelengths under the localized surface plasmon effect (LSPR) with mechanical stresses, which change the distance between NPs. In this study, we attempted to detect the presence of gas utilizing the LSPR-related color change of a chain of Au NPs. The assembly of Au NPs, arranged in a chain shape, experienced a color change from dark blue to purple with a change in the distance between the NPs by applying a physical force, i.e., compression, stretching, and gas pressure. As the force of compression and the degree of stretching increased, the absorption wavelength shifted from doublet peaks at 650 and 550 nm to a singlet peak at 550 nm. Further, applying gas pressure caused an identical color change. With this result, we propose a method that could be applied to all gases that require detection based on gas pressure.

Experimental Evaluation of Cohesion Properties for Various Coals

  • Kim, Minsu;Lee, Yongwoon;Ryu, Changkook;Park, Ho Young;Lee, Hyun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.279-284
    • /
    • 2016
  • Assessing the handling properties of coal becomes a major issue for the operation of a fuel supply system in power plants, due to the increased types of coal imported into Korea. In this study, the cohesion strengths of 13 bituminous and sub-bituminous coals from different countries were tested by measuring the amount of force that leads to a failure of consolidated particles. The particle size was in the range of 0.1-2.8 mm, which represents the coarse particles before pulverization. While the cohesion strength was proportional to the compression force in the tested range, the effects of the surface moisture content and the weight fraction of fines were crucial for cohesive coals. At fixed conditions of surface moisture and particle size, large variations were found in the cohesion propensity between coals. For coals of 0.1-0.5 mm with the moisture added close to the critical value, cohesive coals had the density over $900kg/m^3$ after consolidation. The cohesion propensity was not correlated with the basic properties of coals with sufficient statistical significance.

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

A novel low-profile flow sensor for monitoring of hemodynamics in cerebral aneurysm

  • Chen, Yanfei;Jankowitz, Brian T.;Cho, Sung Kwon;Yeo, Woon-Hong;Chun, Youngjae
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.71-84
    • /
    • 2015
  • A low-profile flow sensor has been designed, fabricated, and characterized to demonstrate the feasibility for monitoring hemodynamics in cerebral aneurysm. The prototype device is composed of three micro-membranes ($500-{\mu}m$-thick polyurethane film with $6-{\mu}m$-thick layers of nitinol above and below). A novel super-hydrophilic surface treatment offers excellent hemocompatibility for the thin nitinol electrode. A computational study of the deformable mechanics optimizes the design of the flow sensor and the analysis of computational fluid dynamics estimates the flow and pressure profiles within the simulated aneurysm sac. Experimental studies demonstrate the feasibility of the device to monitor intra-aneurysmal hemodynamics in a blood vessel. The mechanical compression test shows the linear relationship between the applied force and the measured capacitance change. Analytical calculation of the resonant frequency shift due to the compression force agrees well with the experimental results. The results have the potential to address important unmet needs in wireless monitoring of intra-aneurysm hemodynamic quiescence.

Effects of Chlorobutyl Rubber Content on the Mechanical Properties of Chlorobutyl Rubber Blends (클로로부틸 고무 함량이 클로로부틸 고무 블렌드물의 기계적 물성에 미치는 영향)

  • Park, Cha-Cheol;Pyo, Kyung-Duk
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.280-285
    • /
    • 2010
  • The CIIR blends with SBR, NBR and BR were prepared with various mixing ratios. The mechanical and physical properties of these blends, such as frictional coefficient, abrasion resistance, compression set, and specific gravity, were measured. In the permanent compression set measurement, the blends at the composition of 75 wt% CIIR showed the highest value, which means the lowest resistance to deformation. As SBR, NBR and BR blends with CIIR, the coefficient of friction of the mixtures showed a tendency to decrease in arithmetic average. In the case of blending CIIR with BR in order to increase the friction force, the negative effect due to reduction in abrasion resistance was greater than the positive effect of the improvement of the traction force caused by increasing friction coefficient.

Experimental study on shear damage and lateral stiffness of transfer column in SRC-RC hybrid structure

  • Wu, Kai;Zhai, Jiangpeng;Xue, Jianyang;Xu, Fangyuan;Zhao, Hongtie
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.335-349
    • /
    • 2019
  • A low-cycle loading experiment of 16 transfer column specimens was conducted to study the influence of parameters, likes the extension length of shape steel, the ratio of shape steel, the axial compression ratio and the volumetric ratio of stirrups, on the shear distribution between steel and concrete, the concrete damage state and the degradation of lateral stiffness. Shear force of shape steel reacted at the core area of concrete section and led to tension effect which accelerated the damage of concrete. At the same time, the damage of concrete diminished its shear capacity and resulted in the shear enlargement of shape steel. The interplay between concrete damage and shear force of shape steel ultimately made for the failures of transfer columns. With the increase of extension length, the lateral stiffness first increases and then decreases, but the stiffness degradation gets faster; With the increase of steel ratio, the lateral stiffness remains the same, but the degradation gets faster; With the increase of the axial compression ratio, the lateral stiffness increases, and the degradation is more significant. Using more stirrups can effectively restrain the development of cracks and increase the lateral stiffness at the yielding point. Also, a formula for calculating the yielding lateral stiffness is obtained by a regression analysis of the test data.

Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor (터빈로터 중심공 검사용 자기주행 공압형 로봇 개발)

  • Kang, Baejun;An, Myungjae;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

Compressive Deformation Characteristics of Logging Residues by Tree Species (수종별 벌채부산물의 압축 변형 특성)

  • Oh, Jae Heun;Choi, Yun Sung;Kim, Dae Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.198-205
    • /
    • 2015
  • The aim of this study was to provide the basic design parameters for developing logging residue compression machines by investigating compressive deformation characteristics of different types of logging residues. To achieve these objectives, Pinus rigida, Pinus koraensis and Quercus mongolica were selected as specimens, and compression-deformation tests by UTM(universial testing machine) were conducted. The experimental dataset were used to set up the model based on the compression-deformation ratio in the form of exponential function. The results showed that stress coefficient in terms of mechanical properties of logging residues was decreased, whereas strain coefficient tended to be increased as the number of compression increased at target density of $350kg/m^3$ and $400kg/m^3$. The model presented that the required stress was decreased as the number of compression increased, and the stress growth rate was swelled compared to the change of the deformation rate. Therefore, it showed that proper initial compression force was a significant variable in order to achieve the target density of logging residue.

Properties Evaluation of Polyketone for Use as Earthquake-Resistant Structural Compression Material (내진 구조용 압축재로 활용을 위한 폴리케톤의 특성 평가)

  • Lee, Heon-Woo;Noh, Jin-Won;Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.133-139
    • /
    • 2024
  • The purpose of this study is to propose a new material called polyketone to overcome the limitations of polyurethane, which is currently used as a compression member in the field of earthquake-resistant structures. Although existing polyurethane has excellent elastic properties, it tends to be insufficient to recover the displacement that occurs in the structure. On the other hand, polyketone has excellent strength performance and is attracting attention as an eco-friendly material. In order to evaluate the compression properties of polyketone, which has these advantages, we would like to conduct a comparative experiment with polyurethane that was previously used. The speed dependence of polyketone was identified through simple compression experiments and experimental speed changes under repeated loading conditions, and additional compression behavior was applied to confirm compression behavior characteristics. Polyketone showed compressive strength about 10 times higher than that of polyurethane, and its excellent recovery characteristics were demonstrated by its deformation recovery ability about 14 times higher at relatively small displacements.