• Title/Summary/Keyword: Compression Factor

Search Result 479, Processing Time 0.03 seconds

An Improved Three Step Search Algorithm for the Motion Match Blocks in H.263 (H.263에서 움직임 정합 블록을 위한 개선된 3단계 탐색 알고리즘)

  • Sim, Jong-Chae;Park, Yeong-Mok;Seong, Yun-Ju;Seong, Yun-Ju;Yoo, Kyeong-Jong;Park, Jae-Hong
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.86-96
    • /
    • 2002
  • In video conferencing system using H.263 encoding and decoding time is as important as compression rate is. To reduce encoding time, a number of methods were proposed. We use a method of them that reduces the computational complexity in motion estimation. The complexity is determined by three factors, such as a cost function, a search range parameter, and a motion search algorithm. In fact, it takes a lot of time to encode the video data on account of the cost function factor. That's the reason that we use the factor to reduce encoding time. In this paper, we tried to reduce total encoding time by reducing the number of calling the cost function. In case of a little moving, our algorithm enabled faster motion searching than TSS(Three Step Search) and NTSS(New TSS). Here, we called the algorithm by an ITSS(Improved TSS) that improves a shortcoming of NTSS requiring more checkpoints than TSS. For an experimentation, our algorithm was compared to other algorithms using PSNR, file size and SAD call times.

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Statistical Study of the Ferguson's Angle, Lumbar Gravity Line and Lumbar Lordotic Angle in HIVD Patients. (요추간판탈출증 환자의 요천각, 요추중력중심선 및 요추전만각의 통계적 관찰)

  • Koh, Dong-Hyun;Hong, Soon-Sung;Lee, Jin-Ho;Jung, Sung-Yub;Shin, Joon-Shik
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.2 no.2
    • /
    • pp.17-32
    • /
    • 2007
  • Objectives : The lumbosacral joint is unstable area from an anatomical viewpoint, while it is also a very mobile area in ordinary life, so that clinically major causes of low back pain originate in this joint. The purpose of this study is to assess the difference of the Ferguson's angles, Lumbar gravity lines, Lumbar lordotic angles among Herniated of Intervertebral Disc(HIVD) patients. Methods : We analyzed the lateral view of lumbar spine checked at erect position on 88 patients who had been diagnosed as HIVD by Magnetic Resonance Imaging(MRI). We investigated the Ferguson's angle, Lumbar gravity line, Lumbar lordotic angle on X-ray film. Results and Conclusions : In the acute lumbago group the Ferguson's angle had a tendency to decrease, while in the chronic group it had a tendency to increase. In the acute lumbago group the Lumbar gravity line fell in front of the normal range(sacrum), while in the chronic group it fell behind the normal range(sacrum). In the acute lumbago group the Lumbar lordotic angle usually decreased, while in the chronic group it increased. The Ferguson's angle and the Lumbar gravity line, the Ferguson's angle and the Lumbar lordotic angle, the Lumbar gravity line and Lumbar lordotic angle each had a positive realtionship. The Ferguson's angle, the Lumbar gravity line and the Lumbar lordotic angle was less influenced by the level of HIVD and was more influenced by how long the patient had the pain. The correlationship between each factor was less in the chronic lumbago group than the acute group. In the chronic lumbago group the instability of the lumbosacral joint increased, while in the acute group the compression of the weight on the sacrum increased.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

A Fundamental Study on Evaluation of Web Crippling Strength of Corroded H-Beams (부식 H형 강재의 복부좌굴강도 추정에 관한 기초적 연구)

  • Kim, In-Tae;Shin, Chang-Hee;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.421-433
    • /
    • 2010
  • The most typical deterioration of steel structures is corrosion damage. However, a method to evaluate residual load-carrying capacity of corroded steel structures is not yet established. It is difficult to check current serviceability and safety of the structures. In this study, compressive tests and finite element analyses were conducted on H-beams with corroded web. Then, the effect of corrosion damage on web crippling strength and evaluation methods of the web crippling strength are studied. Based on the tests, 4 H-beam specimens used in a subway construction site and 9 H-beam specimens with different web-thickness and damaged-height underwent compression-tests. To consider loading and supporting areas in the site, compressive loading was applied in the entire region of the upper and bottom flange in 5 H-beam specimens and applied partially on the regions of the upper and bottom flange in 8 specimens. The finite element analysis of 38 parametric model specimens simulating different corrosion damages was also carried out. From experimental and analytical results, the relationships between corrosion damages in the web and residual web crippling strength are presented. Factors web crippling strength was reduced are formulated by using residual average thickness and the standard deviation of the corroded web thickness. Also, a simple evaluation method of residual web crippling strength was proposed.

Case Study on the Instability of the Slopes in Unsaturated Residual Soils Considering the Rainfall Characteristics (강우특성을 고려한 불포화 잔적토 비탈면의 붕괴사례 연구)

  • Nam, Samheon;Lee, Younghuy;Oh, Seboong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This study has obtained Soil Water Retention Curve (SWRC) of the unsaturated soil from the volumetric pressure plate extractor test and the triaxial compression tests was also conducted. By using the rainfall data measured in the site the seepage analysis of unsteady flow was performed with the program of SEEP/W in Geostudio 2007 and stability of the slope was analyzed with SLOPE/W program. Results of analyses show that shear strength of the unsaturated soil increases with the increase of matric suction. And it was also found that the net volumetric stress and the apparent cohesion increased with the matric suction. The seepage analysis of rainfall represents that the increasing rate of negative pore pressure at the zone of large negative pore pressure is appeared to be high even though lower rainfall intensity, but this tendency declines with ground depth. The stability analysis of slope was carried out for the actual plane of failure with the data representing the field condition. The factor of safety thus calculated was about unity (1.0) or just below, which means that the adopted method of analysis is in good agreement with the field condition.

Mechanical Properties And Chlorde Penetration Resistance of Shotcrete according to Mineral Admixture Types and Supplemental Ratio (광물성 혼화재료의 종류 및 혼입율에 따른 숏크리트의 역학적 특성 및 염해 저항성)

  • Han, Seung-Yeon;Yun, Kyong-Ku;Nam, Kyeong-Gung;Lee, Kyeo-Re;Eum, Young-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4960-4968
    • /
    • 2015
  • In this study to improve the chloride durability of the shotcrete structure depending on types and contents of mineral admixture chloride resistance was evaluated by NT BUILD 492 of european test standards. It was also evaluated with the mechanical properties such as static strength and chloride penetration resistance. For shotcrete mixed crushed stone aggregate of the maximum size 10mm of coarse aggregates was produced. Based on 28days compression strength the variable mixed with 15% silica fume showed the highest strength in 67.55MPa. As the content of fly ash and blast furnace slag increased, the strength lowered. In the chloride penetration resistance test, OPC showed "high grade" and In the case of admixture, the penetration resistance tended to increase in all variables except the fly ash. In order to evaluate the service life, the accelerated chloride penetration test was conducted by the standards of KCL, ACI, FIB. Test results were obtained with the lowest spreading factor in a variable mixed with silica fume of 15%. At the KCI standards, It was found to have a service life of about 65 years and at the FIB standards, It was found to have a service life of 131 years. Among standards, the service life of KCI standard in all of the variables was evaluated as the lowest.

Feasibility study of the beating cancellation during the satellite vibration test

  • Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • The difficulties of satellite vibration testing are due to the commonly expressed qualification requirements being incompatible with the limited performance of the entire controlled system (satellite + interface + shaker + controller). Two features cause the problem: firstly, the main satellite modes (i.e., the first structural mode and the high and low tank modes) are very weakly damped; secondly, the controller is just too basic to achieve the expected performance in such cases. The combination of these two issues results in oscillations around the notching levels and high amplitude beating immediately after the mode. The beating overshoots are a major risk source because they can result in the test being aborted if the qualification upper limit is exceeded. Although the abort is, in itself, a safety measure protecting the tested satellite, it increases the risk of structural fatigue, firstly because the abort threshold has been already reached, and secondly, because the test must restart at the same close-resonance frequency and remain there until the qualification level is reached and the sweep frequency can continue. The beat minimum relates only to small successive frequency ranges in which the qualification level is not reached. Although they are less problematic because they do not cause an inadvertent test shutdown, such situations inevitably result in waiver requests from the client. A controlled-system analysis indicates an operating principle that cannot provide sufficient stability: the drive calculation (which controls the process) simply multiplies the frequency reference (usually called cola) and a function of the following setpoint, the ratio between the amplitude already reached and the previous setpoint, and the compression factor. This function value changes at each cola interval, but it never takes into account the sensor signal phase. Because of these limitations, we firstly examined whether it was possible to empirically determine, using a series of tests with a very simple dummy, a controller setting process that significantly improves the results. As the attempt failed, we have performed simulations seeking an optimum adjustment by finding the Least Mean Square of the difference between the reference and response signal. The simulations showed a significant improvement during the notch beat and a small reduction in the beat amplitude. However, the small improvement in this process was not useful because it highlighted the need to change the reference at each cola interval, sometimes with instructions almost twice the qualification level. Another uncertainty regarding the consequences of such an approach involves the impact of differences between the estimated model (used in the simulation) and the actual system. As limitations in the current controller were identified in different approaches, we considered the feasibility of a new controller that takes into account an estimated single-input multi-output (SIMO) model. Its parameters were estimated from a very low-level throughput. Against this backdrop, we analyzed the feasibility of an LQG control in cancelling beating, and this article highlights the relevance of such an approach.

The Estimation Method of Empirical Formula of Strength Parameters by RMR System and Uniaxial Strength (RMR과 일축강도를 이용한 암반 강도정수 추정식의 적용방법)

  • Oh, Sewook;Ahn, Byungchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • It is crucial to decide reasonably the parameters necessary for design through research on the characteristics of rock in order to analyze stability of rock structure. This article has conducted both pressure meter test, uniaxial and triaxial compression test to the areas of andesite or tuff located in local regions such as Yeosu, Gwangju, Yangsan, Busan, and Daejeon and has comparatively analyzed previously proposed estimative formulas. According to the result of estimating the deformation modulus through using the damping coefficient suggested by Nicholson & Bieniawski, when RMR is less than 60, it is desirable to use the result of the pressure meter test considering the damping coefficient. If the RMR value is over 60, however, the formula suggested by Kim Gyo-won has been proved to be the most applicable. Moreover, according to the result of comparing the RMR, adhesion, and angle of internal friction, both the adhesion and angle of internal friction best correspond to the formula proposed by Tsuchiya. Comparatively analyzing the relations between the rock deformation modulus and RMR and also suggesting the formula of calculating the shear strength parameter to use the RMR value, this study did not include the deformation modulus and shear strength parameter as factors to decide the RMR index. Since result can differ by several factors, it will be necessary afterwards to suggest practical estimative formulas applicable to the actual spots of Korea.