• Title/Summary/Keyword: Compression Factor

Search Result 479, Processing Time 0.024 seconds

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

Characterization of Tensile Strength of Anisotropic Rock Using the Indirect Tensile Strength Test (간접인장강도시험을 통한 이방성 암석의 인장강도 특성)

  • 김영수;정성관;최정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.133-141
    • /
    • 2002
  • Isotropic rock and anisotropic rock have different tensile strength which has the greatest influence on rock failure. In this study, elastic modulus of anisotropic rock is obtained through uniaxial compression test, and tensile strength and tension failure behavior are analyzed through indirect tensile strength test. Stress concentration factor of a specimen at the center is obtained from anisotropic elastic modulus and strain by indirect tensile strength test. Theoretical solutions for tensile strength of isotropic and anisotropic rock are compared. Stress concentration factor of anisotropic rock is either higher or lower than isotropic rock depending on the inclination angle of bedding plane. The use of stress concentration factor of isotropic rock resulted in overestimation or underestimation of tensile strength.

Clinical Findings on Vertebral Compression Fracture Diagnosed with MRI (자기공명영상으로 진단된 척추 압박골절의 임상적 소견)

  • Kim, Ham-Gyum
    • Journal of radiological science and technology
    • /
    • v.28 no.3
    • /
    • pp.219-226
    • /
    • 2005
  • By analyzing the severally clinical characteristics such as the prevalence by gender and age, and the developmental region, and the developmental factor in terms of vertebral compression fracture, which was diagnosed by MRI(Magnetic Resonance Imaging), the following conclusions were obtained. 1. The general characteristics in 183 research subjects, were 70 men (38.0%) and 113 women (62.0%), and aged from the minimum 16 years old to the maximum 84 years old. 2. Among 183 persons with abnormal findings in vertebral compression fracture, the single compression fracture was included 111 persons (60.7%) with 38 men (34.0%) and 73 women (66.0%), and women in their 60s were largest with 32 persons. 3. As the multiple compression fracture was included 72 persons (39.3%) among 183 research subjects, and as the incidence had 182 cases, this is what classified the case in which one person with abnormal findings has the compression fracture at the levels with more than one, and there were 70 cases (38.0%) in men and 112 cases (62.0%) in women, and it is being indicated the large frequency in women in their 60s and in their 70s. 4. The developmental regions in the single compression fracture and the multiple compression fracture, were generated about 70% of the whole at $T11{\sim}L2$. 5. In terms of the prevalence by cause for compression fracture in 183 whole subjects, it was largest with 41.4% in the fracture caused by trauma in case of men, and with 70.0% in what was caused by the osteoporosis in case of women, and as for a case that combined men and women, it was largest with 56.8% in the vertebral compression fracture caused by osteoporosis.

  • PDF

An Experimental Study in Rectangular High Strength Concrete Columns under Both Axial Load and Biaxial Bending (2축 편심 축하중을 받는 직사각형 고강도 RC기둥의 거동에 대한 실험적연구)

  • 이종원;조문희;한경돈;유석형;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.209-214
    • /
    • 2001
  • Most reinforce concrete Columns of Building structure are subjected to both axial load and biaxial bending. However, It is hard to estimate the moment capacity of biaxial bending by exact solution. Thus, columns under biaxial bending are designed by approximate methods in practice. The purpose of this study is to compare experimental result with approximate methods and exact solution by computer. Parameters of the present test are compressive strength of concrete (350, 585, 650kgf/$\textrm{cm}^2$) and shape ratio of rectangular section. Ultimately, an experimental shape factor for rectangular RC column section is obtained through the test program. The shape of load contour is dominated by this shape factor obtained experimentally. So, reasonable design of RC columns subjected to both axial compression and biaxial bending depends on load contour.

  • PDF

Analysis of Slender RC Short Beams(a/d<2.5) with Vertical Stirrups using Nonlinear FEM (비선형유한요소해석을 이용한 수직 스터럽이 있는 RC 짧은 보의 해석)

  • Jeong, Jae-Pyong;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.259-264
    • /
    • 2002
  • This paper describes an attempt to develop a unified design approach for reinforced concrete short beam failing in shear based on a Arch Factor. Designing for short beam in shear is not as straightforward as designing for flexure due to the complicated interdependency of the variables involved and to the nonexistence of a rational theory tn current design code. Shear failure of reinforced concrete beams with stirrups is influenced greatly because of the actual geometrical shape(a/d) of the concrete and flexural reinforcement steel ratio, stirrup reinforcement ratio and concrete compression strength, size effect etc. The objective of this paper is to present a pilot study to develop a simplified physical model for estimating shear behavior of reinforced concrete short beams. The Key idea incorporated with this model is the Arch factor, introduced by Kim and White.

  • PDF

Transmission Path Analysis of Noise and Vibration in a Rotary Compressor by Statistical Energy Analysis

  • Hwang, Seon-Woong;Jeong, Weui-Bong;Yoo, Wan-Suk;Kim, Kyu-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1909-1915
    • /
    • 2004
  • The hermetic rotary compressor is one of the most important components of an air conditioning system since it has a great effect on both the performance and the noise and vibration of the system. Noise and vibration occurs due to gas pulsation during the compression process and to unbalanced dynamic force. In order to reduce noise and vibration, it is necessary to identify their sources and transmission path and effectively control them. Many approaches have been tried in order to identify the noise transmission path of a compressor. However, identification has proven to be difficult since the characteristics of compressor noise are complicated due to the interaction of the compressor parts and gas pulsation. In this study, the statistical energy analysis has been used to trace the energy flow in the compressor and to identify the transmission paths from the noise source to the exterior sound field.

Investigation on the selection of capillary tube for the alternative refrigerant R-407C (대체냉매 R-407C의 모세관 선정에 관한 연구)

  • 김용환;김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.56-65
    • /
    • 1998
  • In this paper, experimental investigation of capillary tube performance for R-407C is performed. The experimental setup is made of real vapor-compression refrigerating system. In this study, mass flow rate is measured for capillary tubes of various diameter and length as inlet pressure and degree of subcooling are changed. These data are compared with the results of a numerical model. The mass flow rates of the numerical model are less than by 14% compared with the measured mass flow rates. It is found that mass flow rate and length for R-407c are less than those of R-22 under the same condition. Also based on this experimental study and the numerical model, a set of capillary tube selection charts for R-407C is constructed.

  • PDF

A Fair Investigation on Safety Factor of Slope by Model Tests (모형실험에 의한 사면 안전율의 적정성 연구)

  • Kim, Yong-Sik;Park, Choon-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1313-1323
    • /
    • 2008
  • The purpose of this study is to understand behaviors of slopes and determine soil parameters of slopes through the triaxial compression test and the direct shear test. Following results were obtained by comparing and analyzing model tests and analysis programs of slope stability. The safety factors of the Bishop's simple method, the Morgenstern Price method, the Spencer method and the GLE method were similar to each other but safety factors of the Fellenius method and the Janbu method were different from the formers. It was found that the Bishop's simple method, the Morgenstern Price method, the Spencer method and the GLE method could be used for design but attention should be paid to the Fellenius method and the Janbu method since they underestimated safety factor.

  • PDF

A Study on the Noise and Vibration Transmission Path of Rolling Pistion Type Rotary Compressor Using SEA (통계적 에너지 해석 기법에 의한 공조용 로타리 압축기의 소음 진동 전달 경로 해석)

  • Hwang, Seon-Woong;Jeong, Hyeon-Chul;Ahn, Byung-Ha;Jeong, Weui-bong;Kim, Kyu-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.385.2-385
    • /
    • 2002
  • Hermetic rotary compressor is one of the most important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of the system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration, it is necessary to identify sources of noise and vibration and effectively control them. (omitted)

  • PDF

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF