• Title/Summary/Keyword: Compression Effect

Search Result 2,014, Processing Time 0.042 seconds

A Theoretical Evaluation of the Effect of Refrigerant Charge on the Performance of Vapor-Compression Air-Conditioning System (증기압축식 에어컨의 냉매 충전량에 따른 성능 예측)

  • 이경중;방광현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.486-493
    • /
    • 2000
  • A theoretical model for the transient performance of vapor-compression air-conditioning system has been developed to evaluate the influence of the refrigerant charge on the system performance. A set of mass and energy equations for the simulation of the heat exchangers and the capillary tube and a polytropic compression model for the compressor are used. The present model successfully predicts the transient behavior of the vapor-compression air-conditioner from the startup. As the refrigerant charge is increased, both the evaporating and condensing pressures increase gradually, and the cooling rate and the COP show a maximum in the range of 0.75-0.8 kg of refrigerant charge. This amount of refrigerant mass is determined to be the optimum charge of the model system. Also, the effect of outdoor air temperature on the optimum refrigerant charge is discussed.

  • PDF

Effect of compression on the response of a magneto-rheological suspension

  • See, Howard;Mackenzie, Steven;Chua, Boon Teck
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • A carbonyl iron-based magneto-rheological suspension was compressed in the direction of the applied magnetic field and the change in rheological properties was measured. It was found that the compression did not have a large effect on the magneto-rheological response, which is in contrast to recent reports in the literature describing an almost order of magnitude increase in the shear yield stress. The difference can be attributed to the latter test's use of a sliding wedge apparatus which imparts considerable shearing to the sample during the compression.

Effect of Train Shape on a Compression Wave Generated by a Train Moving into a Tunnel

  • Ogawa Takanobu;Fujii Kozo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.30-36
    • /
    • 1995
  • An axisymmetric flow induced by a train moving into a tunnel is numerically simulated. The effect of train shape on wavefront of a compression wave created by a train is investigated parametrically using several model trains having the same nose shape but different blockage. The zonal method combined with the Fortified Solution Algorithm (FSA) is employed as a numerical algorithm to solve this moving body problem. The computational result is compared with the experimental data. Good agreement is obtained, which justifies the present computational approach. The compression waves created by the model trains are compared and the result shows that the pressure gradient of the wavefront of the compression wave becomes small in the case of small blockage even though the nose shape is same. The wavefront is not determined solely by the cross-sectional area distribution of the train nose.

  • PDF

An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine (급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

Effect of Coating Methods on the Properties of Poly(lactide)-coated Paperboard: Solution Coating vs. Thermo-compression Coating

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1155-1160
    • /
    • 2009
  • Poly(lactide) (PLA)-coated paperboards were prepared by solution coating and thermo-compression coating methods and their effect of coating on the packaging properties such as tensile, water resistance, water vapor barrier, and heat sealing properties was tested. Compared with uncoated control paperboard, tensile strength (TS) of PLA-coated paperboard increased profoundly (2.2-2.6 folds) with slight increase in elongation at break (E). Water absorptiveness (WA) of the paperboard decreased 74-170 folds and water vapor permeability (WVP) decreased 6.3-22.1 folds by coating with PLA, which indicates an increase in the hydrophobicity of the surface of paperboard. Compared with polyethylene (PE)-coated paperboard, both PLA-coated paperboard exhibited 2.3 time higher heat sealing strength. In addition, the PLA-coated paperboards showed equal or higher wet TS than PE-coated paperboard. All the test results showed that the paperboard coated by the thermo-compression coating method was similar to or better than those of coated by the solution coating method.

Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System (R744용 초임계 냉동사이클의 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • In this paper, cycle performance analysis for cooling capacity, compression work and COP of R744($CO_2$) transcritical vapor compression refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : The cooling capacity of R744 increases with superheating degree, but decreases with the increasing evaporating temperature and outlet temperature of gas cooler. The compression work increases with superheating degree and cooling pressure of R744, but decreases with the increasing evaporating temperature. And, The COP increases with outlet temperature and evaporating temperature of R744 gas cooler, but decreases with the increasing superheating degree. Therefore, superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine (디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구)

  • Kim Chul Soo;Jung Young Guan;Jang Tae lk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

Effect of Vibration during Distribution Process on Compression Strength of Corrugated Fiberboard Boxes for Agricultural Products Packaging (농산물 포장용 골판지상자의 수송 중 진동에 의한 압축강도 변화)

  • Shin, Joon Sub;Kim, Jongkyoung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.91-100
    • /
    • 2021
  • Agricultural corrugated fiberboard packaging boxes frequently experience damage due to loading and unloading, vibration during transport, and shock by dynamic distribution condition change. This study was carried out to estimate effect of vibration during distribution process on compression strength of corrugated fiberboard boxes for agricultural products. In order to identify the degradation caused by vibration, after box packaging the agricultural products(tangerine or cucumber), the natural frequencies of the packaging boxes were measured by varying the relative humidity(50, 70 and 90%) at 25℃ temperature. Various types of corrugated fiberboard boxes were packed with tangerines and cucumbers, and the PSD plot vibration tests were conducted by utilizing the actual vibration recording results of the Gyeongbu Expressway section between Seoul and Gimcheon. As a result of the experiment, the decrease in compression strength of the box was relatively low in DW-AB, and the decrease in compression strength of the SW-A 0201(RSC) type box was the highest at 20.49%. In particular, both SW-A and DW-AB showed low compression strength degradation rates for open folder type boxes. The moisture content varies depending on the type of the box or agricultural products, and the enclosed 0201(RSC) type box was generally higher than the open folder or bliss type box, which is believed to be the reason for the decrease in compression strength of RSC type box due to humidity. By the agricultural product, the percentage of decrease in compression strength of box packed with cucumbers was especially high.

Influence of Clothing Pressure on Blood Flow and Subjective Sensibility of Commercial Sports Compression Wear (시판 스포츠 컴프레션 웨어의 의복압이 혈류 및 주관적 감성에 미치는 영향)

  • Kim, Nam Yim;Lee, Hyojeong
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.459-467
    • /
    • 2019
  • Compression wear provides clothing pressure and affects how blood flows. Facilitating a blood flow is one of the most important functions of compression wear. The wearer's sensibility should be considered when designing compression wear. This study instructed participants to put on 5 types of sport compression wear with different pressure levels (CP-1 to CP-5), measured clothing pressure, blood flow level, blood flow rate, and surface temperature, and examined the pressure level that influenced blood flow through a subjective sensibility assessment. An experiment measured the clothing pressure of compression wear available in the market and found that the pressure ranged 0.6-1.1 kPa for the ankle, 0.7-2.3 kPa for the calf, and 0.9-1.9 kPa for the thigh. Meanwhile, blood flow levels and rates significantly increased when participants wore CP-1, which had the highest clothing pressure level, and CP-2 and CP-4 with middle-level pressure. After exercise, CP-2's surface temperature was the highest and revealed that wearing CP-2 facilitated blood flow. CP-2 was evaluated as most positive in the sensibility assessment and showed a clothing pressure of 0.67-1.82 kPa; its pressure for the calf did not surpass 2.0 kPa. Considering positive physical effect of compression wear on blood flow and subjective psychological effect on participants, CP-2 (0.67-1.82 kPa) would have the most suitable clothing pressure level among other types of the wear in this study.

The Influence of Compression Holding Step on Mechanical Properties of Products in Closed-Die Compression Process for Semi-Solid Material (반융용 재료의 밀폐 압축 공정에서 가압유지 단계가 제품의 기계적 성질에 미치는 영향)

  • 최재찬;박형진;이병목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.199-203
    • /
    • 1995
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. The compression holding time that can affect mechanical properties and shape of products is important to make decision, where it is necessary to find overall hert transfer coefficeient properly which has large effect on heat transfer between slug and die. This paper presents the procedure to predict compression holding time of octaining the final shaped part with information of temperature and solid fraction for a cylindrical slug at compression hoiding step in closed-die compression process using heat transfer analysis considering latent heat by means of finite element method. The influence of the predicted compression hoiding time on mechanical properties of products is finally investigated by experiment.

  • PDF