• 제목/요약/키워드: Compressible Volume

검색결과 163건 처리시간 0.03초

2차목을 가지는 초음속 이젝터 유동에 관한 수치계산 (Computations of the Supersonic Ejector Flows with the Second Throat)

  • 최보규;이영기;김희동;김덕줄
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1128-1138
    • /
    • 2000
  • Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.

초음파 유량계를 통하는 기체유동의 CFD 해석 (A CFD Analysis of Gas Flow through an Ultrasonic Meter)

  • 김재형;김희동;이호준;황상윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF

가변형 음속 이젝터 유동에 관한 수치해석적 연구 (A Computational Study of a Variable Sonic Ejector Flow)

  • 이준희;최보규;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.526-531
    • /
    • 2003
  • A cone cylinder is used to obtain variable operation conditions of a sonic ejector-diffuser system. The cone cylinder is movable to change the ejector area ratio, thus obtaining variable mass flow rates. The present study investigates the effects of ejector throat area ratio and operating pressure ratio on the entrainment of secondary stream. The numerical simulations are based on a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations. The ejector throat area is varied between 3.94 and 8.05, and the operating pressure ratio is changed from 3.0 to 9.0. The results show that the entrainment ratio and mass flux ratio become more dependent on the ejector throat area ratio, when the pressure operating ratio is low. The total pressure losses produced in the present ejector system increase with the operating pressure ratio and the ejector area ratio, but for a given operating pressure ratio, the losses are not significantly dependent on the ejector area ratio when it is larger than about 5.0.

  • PDF

원자로 냉각계통의 POSRV 유동에 관한 연구 (A Study on the Flow of POSRV in Reactor Coolant System)

  • 권순범;김인구;안형준;이동원;백승철;김경호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.568-573
    • /
    • 2003
  • When a safety valve equipped in a nuclear power plant opens in an instant by an accident, a moving shock wave propagates downstream the valve, inducing a complicated unsteady flow field. The moving shock wave may exert severe load to the structure. So, to reduce the load acting on the wall of POSRV, a gradual opening of POSRV is adopted in general. In theses connections, a numerical work is performed to investigate the effect of valve opening time on the unsteady flow fields downstream of the valve. Compressible, two-dimensional Navier-Stokes equations are used with the finite volume method. The obtained results show that sharp pressure rise through moving shock tor the case of instant opening is attenuated by employing the gradual opening of valve. It is turned that the flows for the two cases of gradual valve opening time show the similar to that of highly under-expanded one in jet structure having expansion and compression waves and Mach stem. Also, comparing with the results for the two cases of opening time, the shorter the valve opening is, the pressure gradient at the downstream of the valve becomes softly.

  • PDF

제한공간내 펄스가열에 기인한 열음향파의 전달특성에 관한 수치적 연구 (A Numerical Study on the Transmission of Thermo-Acoustic Wave Induced by Step Pulsed Heating in an Enclosure)

  • 황인주;김윤제
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.914-922
    • /
    • 2002
  • Thermo-acoustic waves can be thermally generated in a compressible flow field by rapid heating and cooling, and chemical reaction near the boundary walls. This mechanism is very important in the space environment in which natural convection does not exist. Also this may be a significant factor for heat transfer when the fluids are close to the thermodynamic critical point. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air-filled confined domain with two-step pulsed heating are studied numerically. The governing equations are discretized using control volume method, and are solved using PISO algorithm and second-order upwind scheme. For the purpose of stable solution, time step was set to the order of $1\times10_-9s,\;and\;grids\;are\;50\times2000$. Results show that temperature and pressure distributions of fluid near the boundary wall subjected to a rapid heating are increased abruptly, and the induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. Pressure waves have sharp front shape and decay with a long tail in the case of step heating, but these waves have sharp pin shape in the case of pulsed heating.

상류막 방식과 하류막 방식의 Ludwieg Tube에서 발생하는 유동특성에 관한 연구 (A Study on the Flow Characteristics in the Upstream- and Downstream-Diaphragm Ludwieg Tubes)

  • 신춘식;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.363-366
    • /
    • 2010
  • 여러 형태의 풍동장치 중에서 Ludwieg Tube(LT)는 높은 레이놀즈수 유동을 실현할 수 있는 가장 적합한 장치로 알려져 있다. 일반적으로 LT는 격막의 위치에 따라 두 종류로 구분된다. 본 연구에서는 상류막 방식과 하류막 방식 LT의 작동특성을 조사하기 위하여, 수치해석적인 방법을 적용하였다. 수치해석에서는 2차원 축대칭, 비정상, 압축성 Navier-Stokes 방정식에 유한체적법을 적용하였다. 그 결과, 본 수치해석은 시동과정의 유동 메커니즘을 파동선도를 이용하여 상세하게 설명하였으며, 시동 시간과 작동시간의 특성을 조사하였다.

  • PDF

스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구 (The Effect of Annular Slit on a Compressible Spiral Jet Flow)

  • 조위분;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF

이중목 노즐을 이용한 추력벡터 제어에 관한 기초적 연구 (A Fundamental Study of Thrust-Vector Control Using a Dual Throat Nozzle)

  • 신춘식;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.339-342
    • /
    • 2010
  • 최근 이중목 노즐(Dual Throat Nozzle, DTN)을 사용하여 추진체의 추력을 제어하는 방법이 많은 주목을 받고 있다. 이중목 노즐은 공동을 사이에 두고 두 개의 노즐 목을 가지도록 설계된다. 본 연구에서는 DTN의 유동특성을 조사하기 위하여, 수치해석적인 방법을 적용하였으며, 2차유동의 질량 유량을 변화시켰다. 수치해석에서는 2차원, 압축성 Navier-Stokes방정식을 풀기 위하여, 유한체적법을 적용하였다. 그 결과 본 수치해석은 실험결과를 잘 예측하였으며, DTN을 이용한 추력벡터 제어는 추력계수와 유출계수의 항으로 상세하게 설명하였다.

  • PDF

비정렬 혼합 격자계 기반의 삼차원 점성 유동해석코드 개발 (Development of a 3-D Viscous Flow Solver Based on Unstructured Hybrid Meshes)

  • 정문승;권오준
    • 한국항공우주학회지
    • /
    • 제35권8호
    • /
    • pp.677-684
    • /
    • 2007
  • 본 연구에서는 삼차원 점성 유동을 효율적으로 해석하기 위해 사면체, 프리즘, 피라미드를 포함하는 비정렬 혼합격자계를 기반으로 하는 유동해석코드를 개발하였다. 유동의 지배방정식은 격자점 중심의 유한체적법을 사용하여 공간차분회었으며, 제어테적은 메디안 듀얼(median-dual)방법으로 구성하였다. 난류유동 해석은 Spalart-Allmaras 난류모형과 연계하여 계산되었다. 개발된 해석코드의 정상 유동 검증을 위해 삼차원 날개에 대한 층류, 난류유동을 해석하였으며, 비정상 유동 검증을 위해 조화운동에 의해 진동하는 삼차원 날개에 대한 유동해석을 수행하였다.

압축성을 고려한 사출성형 충전과정에 관한 연구 (Analysis of Filling in Injection Molding with Compressibility)

  • 한경희;임용택
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.735-745
    • /
    • 1997
  • In this study, the compressibility of resin was considered in filling analysis to account for the possible packing type flow. A numerical simulation program employing a hybrid finite element/finite difference scheme was developed to solve Hele-Shaw flow of the compressible viscous fluid at non-isothermal conditions. To advance the melt front, a control volume approach was adopted. Thin complex 3-D shapes of cavities, runners, and sprues were discretized by employing triangular, cylindrical and/or rectangular strip elements. Mass conservation was applied to each control volume to solve for the pressure distribution. Directly applying a constant mass flow rate at the inlet removes calculation of the apparent pressure boundary conditions, resulting in better simulation condition. The Cross model was used to model viscosity and the Tait equation was employed to represent density as a function of temperature and pressure. The validity of the developed program was verified through comparisons with available data in the literature and the effect of compressibility on the pressure distribution was discussed. To reduce computation time, 1-D and 2-D elements were used instead of applying triangular elements and the numerical results were compared to each other.