• 제목/요약/키워드: Compressible Flows

검색결과 249건 처리시간 0.024초

화염유도로 주위의 3차원 초음속 제트 유동 해석 (Three Dimensional Supersonic Jet Flow Analysis Impinging on Flame Deflector Surface)

  • 박승경;최봉근;윤경택;우유철;이대성;강선일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.494-498
    • /
    • 2001
  • When supersonic jet impinges on wall from the nozzle, complex flow pattern appears such as Mach disc, expansion fan, and jet boundary. The numerical computation of this supersonic jet is important on flame deflecctor design for launch space especially. In this paper, we analyzed supersonic jet structure impinging on deflector wall using three dimensional steady and unsteady compressible equation and showed temperature and pressure distribution on the wall surface. As a result, some dominant factors of jet flows are discussed for conceptual design of flame deflector.

  • PDF

축류터빈 내부의 3차원 압축성 점성 유동특성에 관한 수치 시뮬레이션 (Numerical Simulation of Three-Dimensional Compressible Viscous Flow Characteristics in Axial-Flow Turbines)

  • 정희택;정향남
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.42-48
    • /
    • 2004
  • Numerical simulation of viscous compressible flow in turbomachinery cascade involves many problems due to the complex geometry of blade but also flow phenomena. In the present study, numerical investigations have been performed to examine the three-dimensional flow characteristics inside the transonic linear turbine cascades using a commercial code, FLUENT. Multi-block H-type grids are applied to the high-turning turbine rotor blades and comparisons with the experimental data and the numerical results have been done. In addition, the effects of turbulence models on the prediction of the endwall flows are analyzed in the sense of the flow compressibility.

  • PDF

추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구 (Computational Study of the Bleed-Pump Type Subsonic/Sonic Ejector Flows)

  • 김희동;권오식;구병수;최보규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.485-490
    • /
    • 2000
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends form the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

  • PDF

저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석 (Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model)

  • 최창호;유정열
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

Numerical Analysis of a Weak Shock Wave Propagating in a Medium Using Lattice Boltzmann Method (LBM)

  • Kang, Ho-Keun;Michihisa Tsutahara;Ro, Ki-Deok;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2034-2041
    • /
    • 2003
  • This study introduced a lattice Boltzmann computational scheme capable of modeling thermo hydrodynamic flows with simpler equilibrium particle distribution function compared with other models. The equilibrium particle distribution function is the local Maxwelian equilibrium function in this model, with all the constants uniquely determined. The characteristics of the proposed model is verified by calculation of the sound speeds, and the shock tube problem. In the lattice Boltzmann method, a thermal fluid or compressible fluid model simulates the reflection of a weak shock wave colliding with a sharp wedge having various angles $\theta$$\sub$w/. Theoretical results using LBM are satisfactory compared with the experimental result or the TVD.

공동을 지나는 비정상 유동에 의한 소음 방사 해석 (Numerical Investigation of Sound Generation in the Flow Past a Cavity)

  • 허대영;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.104-109
    • /
    • 2000
  • The modes of oscillation and radiated acoustic fields of compressible flows over open cavities are investigated computationally. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoutic field. The results show a transition from a shear layer mode, for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear layer mode is well characterized by Rossiter modes and these oscillations lead to intense upstream acoustic radiation dominated by a single frequency. The wake mode is characterized instead by a large-scale vortex shedding. Acoustic radiation is more intense, with multiple frequencies present.

  • PDF

초음속 마이크로제트 유동의 수치해석적 가시화 (Numerical Visualization of Supersonic Microjet Flows)

  • 신춘식;이종성;김희동
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.35-41
    • /
    • 2010
  • Supersonic microjets acquire considerable research interest from a fundamental fluid dynamics perspective, in part because the combination of highly compressible flow at low-to-moderate Reynolds number is not very common, and in part due to the complex nature of the flow itself. In addition, microjets have a great variety engineering applications such as micro-propulsion, MEMS(Micro-Electro Mechanical Systems) components, microjet actuators and fine particle deposition and removal. Numerical simulations have been carried out at moderate nozzle pressure ratios and for different nozzle exit diameters to investigate and to understand in-depth of aerodynamic characteristics of supersonic microjets.

솔레노이드 밸브의 고유유량계수에 대한 실험과 성능예측 (Experiment and Performance Prediction on Inherent Flow Coefficient of a Solenoid Valve)

  • 이중엽;이수용
    • 항공우주기술
    • /
    • 제10권1호
    • /
    • pp.70-78
    • /
    • 2011
  • 일반적으로 압축성과 비압축성에 따라 사용되는 밸브의 유량 관계식은 다르다. 본 논문에서는 유체에 따라 유량 실험에 수행했고, 고유유량계수를 측정했다. 압축성 및 비압축성 유체에 대한 실험 결과, 고유유량계수는 정확히 일치했다. 1/2" 솔레노이드 밸브에 대한 유량실험 결과 고유유량계수는 약 2 이다. 실험을 통해 확보 된 솔레노이드 밸브의 고유유량계수는 아메심으로 모델링하여 밸브의 유동특성을 예측했다.

추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구 (Computations of the Bleed-Pump Type Subsonic/Sonic Ejector Flows)

  • 최보규;구병수;김희동;김덕줄
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.269-276
    • /
    • 2001
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

저마하수 예조건화 기법을 위한 다중격자 DADI 기법 (Multigrid DADI Method For Low Mach Number Preconditioning Method)

  • 성춘호;권장혁;최윤호;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.20-30
    • /
    • 2001
  • A multigrid DADI method for low Mach number preconditioning method is presented. The eigenvalues of governing equations are modified by A low Mach number preconditioner developed by Choi & Merkle, and it results in an accurate solution and fast convergence In the low Mach number region. The convergence of numerical method is further accelerated by multigrid method. The efficient and accuracy of present method is shown by comparison with conventional solution method for the compressible flows.

  • PDF