• Title/Summary/Keyword: Compressibility Correction Model

Search Result 13, Processing Time 0.016 seconds

Three-dimensional Effects of an Axi-symmetric Pintle Nozzle (축대칭 핀틀노즐의 3차원 효과 분석)

  • Lee, Gang-Min;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.47-55
    • /
    • 2018
  • In order to determine whether three-dimensional effects exist in a pintle nozzle of axisymmetric shape, a three-dimensional numerical analysis was performed. The compressibility correction was implemented with the k-${\omega}$ SST turbulence model to predict the complex flow separation transition in acceptable accuracy. Recirculation zones were observed at both the front end and rear faces of the pintle, and the flow through the pintle nozzle conveyed complex shock wave structures. Three-dimensional effects that resulted from the reasonable flow separation location were noted, and a trace of the transient pressure increase was observed, mismatched by a two-dimensional axi-symmetric analysis.

Numerical Analysis of Sunroof Buffeting using STAR-CCM+ (STAR-CCM+를 이용한 썬루프 버페팅 유동 소음 해석)

  • Bonthu, Satish Kumar;Mendonca, Fred;Kim, Ghuiyeon;Back, Young-R.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • CFD flow simulation of vehicles with open sunroof and passenger window help the automotive OEM(original equipment manufacturer) to identify the low frequency noise levels in the cabin. The lock-in and lock-off phenomena observed in the experimental studies of sunroof buffeting is well predicted by CFD speed sweep calculations over the operating speed range of the vehicle. The trend of the shear layer oscillation frequency with vehicle speed is also well predicted. The peak SPL from the CFD calculation has a good compromise with the experimental value after incorporating the real world effects into the CFD model by means of artificial compressibility and damping correction. The entire process right from modeling to flow analysis as well as acoustic analysis has been performed within the single environment i.e., STAR-CCM+.

Consideration of Bentonite Cake Existing on Vertical Cutoff Wall in Slug Test Analysis (벤토나이트 케익을 고려한 연직차수벽의 순간변위시험(slug test) 해석)

  • Lim, Jeehee;Nguyen, The-Bao;Lee, Dongseop;Ahn, Jaeyoon;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.5-17
    • /
    • 2013
  • Slug tests can be adopted to estimate hydraulic conductivity of the slurry trench wall backfill for its abilities to reflect the in-situ performance of the construction. A comprehensive three-dimensional numerical model is developed to simulate the slug test in a slurry trench wall considering the presence of bentonite cake on the interface boundaries between the wall and the surrounding soil formation. Influential factors such as wall width (i.e., proximity of wall boundary), well deviation, vertical position of well intake section, compressibility of wall backfill, etc. are taken into account in the model. A series of simulation results are examined to evaluate the bentonite cake effect in analyzing practical slug test results in the slurry trench wall. The results show that the modified line-fitting method can be used without any correction factor for the slug test in the slurry trench wall with the presence of bentonite cake. A case study is reanalyzed with the assumption of existing bentonite cake. The results are compared with the previously reported results by the approaches assuming no bentonite cake (constant-head boundary) or upper-bound solution (no-flux boundary). The case study demonstrates the bentonite cake effect and the validity of the modified line-fitting method in the estimation of the hydraulic conductivity of the slurry wall backfill.