• Title/Summary/Keyword: Compressed hydrogen gas

Search Result 58, Processing Time 0.021 seconds

Synthesis and Characterization of Calcium Derivative Combined with High-Surface-Area Activated Carbon Composites for Fine Toxic Gas Removal

  • Areerob, Yonrapach;Nguyen, Dinh Cung Tien;Dowla, Biswas Md Rokon;Kim, Hyuk;Cha, Je-Woo;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.473-479
    • /
    • 2018
  • Highly toxic gases such as hydrogen sulfide ($H_2S$), carbon dioxide ($CO_2$), and ammonia ($NH_3$) are generated by both nature and human activities and affect human health. In this research, activated carbon combined with $Ca(OH)_2$ and $CaCO_3$ (AC-CO and AC-CC, respectively) were fabricated and applied in absorbing toxic gases from air pollutants. Activated charcoal powder was compressed in the form of pellets and used in the designated conditions. The optimum operating conditions and material properties, such as adsorption capacity, effect of weight ratio of the mixture, and hardness, have been investigated after combining with the calcium derivative. The good performance exhibited in this study suggests that this material is expected to be an effective and economically viable adsorbent for $NH_3$, $CO_2$, and $H_2S$ removal from the air system.

A Trend of Catalyst Technology for After treatment on H2-CNG Mixed Fuel Vehicles (수소-CNG 혼합연료 차량에서의 후처리장치용 촉매기술 동향)

  • Lee, Ung-Jae;Shim, Kyung-Sil;Jung, Ju-Yong;Kim, Tae-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.21-26
    • /
    • 2011
  • Emissoin of heavy duty vehicle have much positioned in air pollution although its limited number of vehicles. CNG vehicles are coming to the fore as one of the solution of diesel vehicles. CNG vehicles exhaust smaller emission than diesel vehicles on PM and NOx. In this study, aftertreatment technologies are introduced on vehicles which use CNG and hydrogenmixed fuel. Withmixing hydrogen with CNG, combustion efficiency is enhanced, and harmful emission might be decreased, but methane that is main component of CNG brings green house effect. In order to remove methane and NOx in exhaust gas of CNG engine, methane oxidation catalyst and SCR technologies were respectively analyzed.

Effect of Operating Condition Change on the Conversion Efficiency of TWC with HCNG Engine (운전조건 변화가 HCNG 엔진용 삼원촉매 전환효율에 미치는 영향)

  • Kim, Chang-Gi;Lee, Sung-Won;Yi, Ui-Hyung;Park, Cheol-Woong;Lee, Sun-Youp;Choi, Young;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.40-46
    • /
    • 2015
  • Stoichiometric combustion engine with Three-way catalyst had an advantage that can reduce the harmful emissions effectively. Fuel equivalence ratio controlled from engine is very important because Fuel equivalence ratio with high conversion efficiency was narrow. This study analyzed the conversion efficiency under whole range of operating area for to evaluate the performance of three-way catalyst. In order to identify the Optimum conversion efficiency, the conversion efficiency due to change the control value of fuel equivalence ratio was investigated. The result show that conversion efficiency of emissions(more than 95%) has discovered by means of fuel equivalence ratio control at each test condition. As engine power increases, optimal fuel equivalence ratio tended to increase linearly under operating conditions of similar exhaust gas temperature.

Evaluation about Dielectric Property of Heat Transfer Fluids for Fuel Cell Vehicle using Cylindrical Multi-Terminal Capacitive-Conductive Sensor (원통형 다전극식 정전용량-전기전도도 센서를 이용한 연료전지 차량용 냉각수의 유전특성 평가)

  • Kim, Jae-Hoon;Kim, Ju-Han;Kim, Yoon-Hyung;Choi, Kang-Wal;Han, Sang-Ok;Yong, Gee-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1087-1094
    • /
    • 2010
  • We have developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid. It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Also to assess diagnosis characteristics of heat transfer fluid, i.e. coolant, we have performed accelerated aging test using developed sensor attached to cooling system. Consequently, it was measured dielectric and electric resistance of coolant to estimate and analyse for dielectric properties by degradation condition.

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels in D.I Compression-Ignition Engine (직접분사식 압축착화엔진에서 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Jeon, Jong Up;Lee, Sangwook;Pyo, Youngduck;Lee, Youngjae;Suh, Hocheol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.530-537
    • /
    • 2012
  • This work experimentally investigates that Diesel-DME blended fuel influences combustion characteristics and emissions (NOx, CO, HC, smoke) in a single-cylinder DI diesel engine. Diesel is used as a main fuel and DME is blended for the use of its quick evaporating characteristics. Diesel and DME are blended by the method of weight ratio. Weight ratios for Diesel and DME are 95:5 and 90:10 respectively and the both ratios have been used altogether in blended fuel. The experiments are conducted in this study single cylinder engine is equipped with common rail and injection pressure is 700 bar at 1200 rpm. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions. DME is compressed to 15 bar by using nitrogen gas thus it can be maintained the liquid phase. In this study, different system compared others paper is common rail system, also there is combustion and emission about compared DME and diesel fuel. It is expected to be utilized about blended fuel.

Process Simulation of HCNG Refueling System (HCNG 충전 시스템 공정모사)

  • Kim, Sang-Min;Han, Jeong-Ok;Lee, Yeong-Cheol;Lee, Joong-Seong;Kim, Yong-Cheol;Chae, Jeong-Min;Hong, Seong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, simulation work of HCNG refueling system was performed. The hydrogen was produced from steam reforming process by natural gas. The conversion of natural gas is increased as SCR is increased. but it was no significant difference more than 3 of SCR and fuel throughput is increased as GHSV is increased. Both conversion and fuel throughput levels was optimized when the $1700h^{-1}$ of GHSV. CNG was compressed from low pressure natural gas. For the mixing of $H_2$ and CNG is mixed with the high pressure conditions such as 400bar of $H_2$ and 250bar of natural gas. Single-stage compression was required more power than multi stage. So, multi stage compression was suggested for high pressure compression. We calculated the intermediate pressure to minimize total required power of compressors. The intermediate pressure for $H_2$ and natural gas were derived at 61 and 65 bar, respectively.

Study of Performance and Knock Characteristics with Compression Ratio Change in HCNG Engine (HCNG 엔진에서 압축비 변경에 따른 성능 및 노킹 특성 연구)

  • Lim, Gi Hun;Lee, Sung Won;Park, Cheol Woong;Choi, Young;Kim, Chang Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • Hydrogen-compressed natural gas (HCNG) blend has attracted attention as a fuel that can reduce $CO_2$ emissions because it has low carbon content and burns efficiently. An increase in the compression ratio of HCNG engines was considered as one of the methods to improve their efficiency and reduce $CO_2$ emissions. However, a high combustion rate and flame temperature cause abnormal combustion such as pre-ignition or knocks, which in turn can cause damage to the engine components and decrease the engine power. In this study, the performance and knock characteristics with a change in the compression ratio of an HCNG engine were analyzed. The combustion characteristics of HCNG fuel were evaluated as a function of the excess air ratio using a conventional CNG engine. The effects of the compression ratio on the engine performance were evaluated through the same experimental procedures.

Characteristics of Pd Catalysts for Methane Oxidation (메탄 산화를 위한 Pd 촉매의 특성)

  • Lee, Jin-Man;Yang, O-Bong;Kim, Chun-Yeong;Woo, Seong-Ihl
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.557-562
    • /
    • 1999
  • The reaction properties of Pd. Pd-Ce and Pd-La catalysts supported on ${\gamma}-Al_2O_3$ were investigated in the oxidation reaction of methane($CH_4$) exhausted from the compressed natural gas vehicle in a U-tube flow reactor with gas hourly space velocity of $72,000h^{-1}$. The catalysts were characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), BET surface area and hydrogen chemisorption. Pd catalyst prepared by $Pd(NO_3)_2$ as a palladium precursor and calcined at $600^{\circ}C$ showed the highest activity for a methane oxidation. Catalytic activity of calcined $Pd/{\gamma}-Al_2O_3$ in which most of palladium was converted into palladium oxide species was higher than that of reduced $Pd/{\gamma}-Al_2O_3$ in which most of palladium existed in palladium metal by XRD. As increasing the number of reaction cycles in the wide range of redox, the catalytic activity of $Pd/{\gamma}-Al_2O_3$ was decreased and the highly active window became narrower. Lanthanum oxide promoted Pd catalyst, $Pd/La/{\gamma}-Al_2O_3$ showed enhanced thermal stability compared with $Pd/{\gamma}-Al_2O_3$ even after aging at $1000^{\circ}C$, which was ascribed to the role of La as a promoter to suppress the sintering of palladium metal and ${\gamma}-Al_2O_3$ support. Almost all of methane was removed by the reaction with NO at the redox ratio of 1.2 in case of oxygen excluded steam, but that activity was significantly decreased in the steam containing oxygen.

  • PDF