• Title/Summary/Keyword: Compressed air engine

Search Result 57, Processing Time 0.024 seconds

A Study on Durability Test of Check Valve for CNG Vehicles (천연가스 차량용 체크밸브의 내구성능에 관한 연구)

  • Kim, Chang-Gi;Lee, Sun-Youp;Cho, Gyu-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.15-20
    • /
    • 2009
  • The number of compressed natural gas (CNG) vehicles have increased gradually by virtue of korea government's urban air quality improvement policy since 1998. Although the use of CNG as transportation fuel gives environmental benefits, there is a possibility of huge accidents from unexpected fire. Therefore, needs for the guarantee of safety are indispensible for the reliable operation of CNG vehicles. A check valve is a safety device which prevents leakage of the pressurized fuel charged in a fuel tank. Durability of this component should be guaranteed in spite of repeated operation. This research has performed durability tests of a CNG check valve regarding the repeated usage, extreme chattering, and the effect of compressor oil.Although a check valve used for CNG vehicle satisfies validation requirements in the test results, it has been found that problem in the function of leakage prevention in a check valve could take place in the case of prolonged exposure to compressor oil.

  • PDF

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.

A Basic Study on Physical Method for Preventing Recombination of Gas Product from the Decomposition of Ammonium Carbamate (암모니움 카바메이트 분해 시 생성된 가스의 재결합 방지를 위한 물리적 방법의 기초연구)

  • Chun, Minwoo;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.639-647
    • /
    • 2017
  • This basic study is focused on the physically removal method of carbon dioxide from the decomposition of ammonium carbarmate to prevent the recombination of ammonium salts. A basic visual experimental set-up was designed and constructed to observe the recombination phenomena from the proper composition of ammonia gas, carbon dioxide gas, and compressed air dilution gas. To quantify the recombination phenomena, a simple device was designed to measure the weight change under severe cases for three different tube sizes. The temperature and pressure in the visual tube and the volumetric flow rates of the nitrogen dilution gas were studied and the conditions to avoid recombination were analyzed according to mean free path theory. Diffusivity values based on the Chapman-Enskog theory were calculated from the experimental data. These value may serve as an index for the prevention of recombination.

Numerical Analysis of Electromagnetic Radiation Characteristics by High Voltage and General Cables for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블과 일반 케이블에 의한 차량 전자파 방사 특성 수치해석 연구)

  • Lee, Soon-Yong;Seo, Won-Bum;Lim, Ji-Seon;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.152-160
    • /
    • 2011
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) which is consisted of many motors in water pump, air blower, and hydrogen recycling pump as well as inverters for these motors is essential. Furthermore, there are also electric systems for entertainment, information, and vehicle control such as navigation, broadcasting, vehicle dynamic control systems, and so on. Since these systems are connected by high voltage or general cables, EMC (Electromagnetic compatibility) analysis for high voltage and general cable of FCEV is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields by high voltage and general cables for FCEVs is studied. From numerical analysis results, total time harmonic electromagnetic field strength from high voltage and general cables have difference of 13~16 dB due to ground effect by impedance matching. The EMI results of FECV at 10 m distance shows difference of 41 dB at 30 MHz and 54 dB at 230 MHz compared with only general cable routing.

A Trend of Catalyst Technology for After treatment on H2-CNG Mixed Fuel Vehicles (수소-CNG 혼합연료 차량에서의 후처리장치용 촉매기술 동향)

  • Lee, Ung-Jae;Shim, Kyung-Sil;Jung, Ju-Yong;Kim, Tae-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.21-26
    • /
    • 2011
  • Emissoin of heavy duty vehicle have much positioned in air pollution although its limited number of vehicles. CNG vehicles are coming to the fore as one of the solution of diesel vehicles. CNG vehicles exhaust smaller emission than diesel vehicles on PM and NOx. In this study, aftertreatment technologies are introduced on vehicles which use CNG and hydrogenmixed fuel. Withmixing hydrogen with CNG, combustion efficiency is enhanced, and harmful emission might be decreased, but methane that is main component of CNG brings green house effect. In order to remove methane and NOx in exhaust gas of CNG engine, methane oxidation catalyst and SCR technologies were respectively analyzed.