• 제목/요약/키워드: Compressed Air

Search Result 432, Processing Time 0.026 seconds

Risk Assessment with the Development of CAES (Compressed Air Energy Storage) Underground Storage Cavern (CAES(Compresses Air Energy Storage) 지하 저장 공동 개발에 따른 리스크 사정)

  • Yoon, Yong-Kyun;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.319-325
    • /
    • 2013
  • The objective of this study is to assess risks which might occur in connection with the storage of the highly compressed air in underground opening. Risk factors were selected throughout literature survey and analysis for the characteristic of CAES. Large risk factors were categorized in three components; planning and design phase, construction phase, and operation & maintenance phases. Large category was composed of 8 medium risk groups and 24 sub-risks. AHP technique was applied in order to analyze the questionnaires answered by experts and high-risk factors were selected by evaluating the relative importance of risks. AHP analysis showed that the operation & maintenance phases are the highest risk group among three components of large category and the highest risk group of eight medium risk groups is risk associated with the quality and safety. Risk having the highest risk level in 24 sub-risks is evaluated to be a failure of tightness security of inner containment storing compressed air.

Design and Performance Evaluation of Solar Air Receivers (공기식 태양열 흡수기의 설계 및 성능평가)

  • Cho, Hyun-Seok;Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.207-212
    • /
    • 2012
  • It is important to produce the high-temperature and high-pressure air for the concentrated solar power system using the combined cycle. In this paper, we designed two types of tubular receivers to heat up the compressed air and provided their preliminary experimental results for performance evaluation and further improvements. The developed receivers are in a square cavity shape surrounded by flow conduits for easy scale-up and radiation loss reduction. The two receivers were tested with 5 bar air in the KIER solar furnace and evaluated in terms of the outlet temperature and the efficiency.

Condition Diagnosis of Air-conditioner Compressor by Waveform Analysis of AE Raw Signal (AE 원신호 파형분석에 의한 에어컨 컴프레서의 상태 진단)

  • 이감규;강익수;강명창;김정석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.125-129
    • /
    • 2004
  • For the diagnosis of compressor abnormal condition in air-conditioner, AE signal which is derived from wear condition, compressed air and assembly error is analyzed experimentally. The burst and continuous type AE signal occurred by metal contact and compressed air and AE raw signal of compressors were directly acquired in production line. After extracting samples according to waveforms, Early Life Test(ELT) is conducted and classified to normal and abnormal waveform. The efficient parameters of waveform pattern are investigated in time and frequency domain and the diagnosis algorithm of air-conditioner by Neural Network estimation is suggested.

A Study on Optimizing Drying Performance of Air Dryer (에어 드라이어 제습성능 최적화 프로그램 개발)

  • Park, Won-Ki;Lee, Hi-Koan;Yang, Gyun-Eui;Mun, Sang-Don
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-75
    • /
    • 2010
  • Compressed air represents an energy source and an force-transmission medium for brake systems on medium-heavy and heavy-duty commercial vehicles. However, one disadvantage is the tendency of air to absorb moisture in the form of water vapor. This water vapor condenses once the air, which is heated during compression, cools back to ambient temperature upon emerging from the air compressor. The resulting condensation assumes the form of moisture in pneumatic lines, air tanks, cylinders and valve assemblies and can have negative consequences for the brake system and vehicle safety. The pneumatic systems on today's vehicles are equipped with air dryers, in which the supplied air is dried according to the adsorption principle. In the systems, the compressed air flows through a granular desiccant with molecular sieves which captures the water molecules.

Energy Analysis of Constant-Pressure Compressed Air Energy Storage (CAES) Generation System (정압식 압축공기저장(CAES) 발전 시스템 에너지 분석)

  • Kim, Young-Min;Lee, Sun-Youp;Lee, Jang-Hee
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.178-184
    • /
    • 2011
  • Compressed Air Energy Storage (CAES) is a combination of energy storage and generation by storing compressed air using off-peak power for generation at times of peak demand. In general, both charging and discharging of high-pressure vessel are unsteady processes, where the pressure is varying. These varying conditions result in low efficiencies of compression and expansion. In this paper, a new constant-pressure CAES system to overcome the current problem is proposed. An energy analysis of the system based on the concept of exergy was performed to evaluate the energy density and efficiency of the system in comparison with the conventional CAES system. The new constant-pressure CAES system combined with pumped hydro storage requires the smaller cavern with only half of the storage volume for variable-pressure CAES and has a higher efficiency of system.

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.

A Study on Chargin and Discharging Characteristics of Variable Volume with Compressed Air (가변체적내의 압축공기 충진 및 방출특성연구)

  • Kim, Dong-Soo;Kim, Hyoung-Eui;Park, Jae-Bum;Kang, Bo-Sig;Sung, Baek-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.125-131
    • /
    • 1995
  • Pneumatic System has been mainly used as main equipment for actuation and control of fluid force in manufacturing industry. For velocity control of piston, meter-out restriction method is used in many cases. In this systems, meter-out restriction method is adopted for analysing the Dynamic Charging and Discharging Process which is Variable Volume Chamber. Experiments has been conducted for different supply pressure condition. As a experimental result, charge side chamber pressure rises to supply pressure rapidily and discharge side chamber pressure decreases. Also, when the air in the cylinder is discharged, tempdrature of air decreases steeply. Restriction of the Cylinder sometimes freeze and it dose not function. The result will be useful for the analysis of pneumatic system.

  • PDF

High Speed Ball End Milling for Difficult-to-Cut Materials

  • Lee, Deug-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.19-27
    • /
    • 2000
  • High speed machining (HSM), specifically end milling and ball end cutting, is attracting interest in the die/mold or aerospace industries for the machining of complex 3D surfaces. HSM of difficult-to-cut materials such as die/mold steels, titanium alloys or nickel based superalloys generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. Following a brief introduction on HSM and reated aerospace or die/mold work, the paper reviews published data on the effect of cutter/workpiece orientation and cutting environments on tool performance. First, experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness. Cutting was performed using 8 mm diameter PVD coated solid carbide cutters with the workpiece mounted at an angle of 45 degree from the cutter axis. A horizontal downwards cutting orientation proveded the best tool life with cut lengths ∼50% longer than for all other directions (horizontal upwards, vertical downwards, vertical upwards). Second, the cutting environments were investigated for dry, flood coolant, and compressed chilly air coolant cutting. The experiments were performed for various hardened materials and various coated tools. The results show that the cutting environment using compressed cilly air coolant provided better tool life than the flood coolant or the dry.

  • PDF

A Study on the Cooling Effects of Mist in the Grinding (연삭 가공시 Mist의 냉각효과에 관한 연구)

  • 이석우;최헌종;김대중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.918-921
    • /
    • 2001
  • In grinding process, the heat of $1200^{\circ}$~$1500^{\circ}$ on the grinding area between grinding wheel and workpiece is generated. It decreases the surface integrity of workpiece and causes the thermal damages such as the deformed layer, residual stress and grinding burn. Generally coolant is widely used for preventing the heat generation on the grinding area, but it deteriorates the working condition by polluting the atmosphere of workplace and in the end pollutes the environment. The grinding methods using the compressed cold air and mist are the cooling methods to substitute conventional coolant. They can decrease the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of grinding methods using the compressed cold air and mist have been investigated. The grinding system equipped with the water bathe and mist spray nozzle was developed. The energy partition to workpiece through measuring the temperature on the workpiece surface was calculated. The surface integrity of workpiece and thermal damage like the deformed layer were analyzed.

  • PDF

A Study on the Environment Conscious Machining Process Using Compressed Dry Cooling Air (건식 저온 압축 공기를 이용한 절삭유 대체형 가공 공정 방식에 관한 연구)

  • 강재훈;송준엽;박종권;노승국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.129-132
    • /
    • 2003
  • Used cutting fluid from machining processes is harmful to both environment and human health. Chemical substances that provide the lubrication function in the machining process are toxtc to the environment if the cutting fluid is released to soil and water and caused serious health problems to workers who are exposed to the cutting fluid in both liquid and mist form. Recently. cost of using cutting fluid is increasing as the number and the extensiveness of environmental protection laws and regulations increase. Therefore, the use of cutting fluid in machining processes place an enormous burden on manufacturing companies to cover the additional costs associated with their use and protection of our environment. Current trends in manufacturing are focused on minimizing or eliminating the use of metalworking fluids in machining processes. And the increased costs for the disposal of waste products (swarf, coolants and lubricants), especially in industrially developed countries, has generated interest in dry machining. A variety of new techniques are testimony that new technology has rationalized further efforts to research and implement dry machining processes. This paper presents the developed equipment, the process optimization and the applications in the field of surface grinding for the new cryogenic dry machining using a compressed cooling air. The investigated new machining process method shows many advantages compared to conventional techniques with cutting fluid.

  • PDF