• Title/Summary/Keyword: Comprehensive Allocation Method

Search Result 27, Processing Time 0.038 seconds

Reliability Allocation for KTX Door System (KTX 승강문 시스템의 신뢰도 배분)

  • Jang, Mu-Seong;Choi, Byung Oh;Lee, Jeong Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1179-1184
    • /
    • 2014
  • Reliability allocation is generally used during the early stage of system development to apportion the system reliability target to its individual modules. This paper presents a comprehensive method for performing the reliability allocation of KTX door systems. Nine criteria for reliability allocation include failure criticality, operating time, risk, complexity, failure rate, maintenance, manufacturing technology, working condition, and reliability cost. For satisfying the system reliability target, the allocated $B_{10}$ lives of four modules are provided.

Estimation of the Expected Socio-economic Benefits of the Largescale Comprehensive Agricultural Development Project and Jointcost Allocation -In the Case of Kumgang Project Area- (대단위 농업종합개발사업의 사회경제적 기대편익 추정과 결합비용의 배분 -금강지구를 중심으로-)

  • Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.159-176
    • /
    • 1996
  • This study is aimed at reviewing the methods of joint cost allocation and allocating the joint cost of estuary dam with specially repect to Kumgang Large-scale Agricultural Comprehensive Development Project. Apart from the water resource development project propelled by Water Resource Development Corporation in connection with Law of Multipurpose Dam Development, the Largescale Comprehensive Agricultural Development Projects couldn't ins-titutionally be carried out cost allocation of common facilities, even though it were concerned with irrigation, municipal and industrical water supply, flood control, sightseeing and industrial zone development components. To decrease farmer's burden of the project costs and, operation and maintenance costs, the joint costs of common facilities like estuary dam included in agricultural development projects have to be allocated by suitable method as alternative cost-remaining benefit method and the analytical activity should be supported by revising the concerned laws as Rural Development and Promotion and, Rural Rearrangement conpatible with the law for multipurpose dam development. Kumgang Agricultural Comprehensive Development Project was selected as a case study for the estimation of socio-economic benefits by project components and joint cost allocation of the estuary dam. The main results of the study are as follows; Joint cost allocation and unit charges by components 1. The project area will be 25,554ha with total project cost of 624,860 million won including the estuary dam cost of 120,843 million won. The project costs were ex-pressed by 1994 constant price. 2. Total quantity of water was estimated 365 million tons which were consisted of 245 million tons for irrigation, 73 million tons for municipal water and 47 million tons for industrial water. 3. The rates of joint cost allocation were amounted to 34.2% for agriculture, 2.5% for sightseeing, 45.7% for transportation, 11.8% for M & I water supply and 5.8% for flood control respectively. 4. The unit financial charges by project components were estimated at 7.88 won per ton for irrigation, 16.11won for M & I water, 1,686won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The financial charges using straitline method for depreciation were estimated at 7.88won per ton for irrigation, 9.12won per ton for M & I water, 624won per vehicle one pass for transportation and 331won per Pyeong for sightseeing area. 5. The unit economic charges by project components were estimated at 21.1 won per ton for irrigation, 15.2won for M & I water, 977won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The economic charges using straitline method for depreciation were estimated at 11.72won per ton for irrigation, 8.61won per ton for M & I water, 331won per vehicle one pass for transportation. Policy recommendation 1. The unit operation and maintenance costs for irrigation water in the paddy field couldn't be imposed as the water resource cost untreated. 2. The dam costs including investment cost and O & M cost, as a joint cost, had to be allocated by each benefited components as transportation, M & I water supply, flood control, irrigation and drainage, and sightseeing. But the agricultural comprehensive project have been dealt as an irrigation project without any appraisal socio-economic benefits and any allocating the joint cost of estuary dam. 3. All the associated project benefits and costs must be evaluated based on accounting principle and rent recovery rate of the project costs and O & M costs should be regulated by the laws concerned. 4. The rural development and promotion law and rural rearrangement law have to be revised comprising joint cost allocation considering free rider problems. 5. The government subsidy for the agricultural base development project has to be covered all the project costs. In case of common facilities representing joint cost allocation problems, all the allocated casts for other purposes like transportation and M & I water supply etc. should be recovered for formation in investment fund for agricultural base development and to procure O & M costs for irrigation facilities.

  • PDF

Scratchpad Memory Architectures and Allocation Algorithms for Hard Real-Time Multicore Processors

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.51-72
    • /
    • 2015
  • Time predictability is crucial in hard real-time and safety-critical systems. Cache memories, while useful for improving the average-case memory performance, are not time predictable, especially when they are shared in multicore processors. To achieve time predictability while minimizing the impact on performance, this paper explores several time-predictable scratch-pad memory (SPM) based architectures for multicore processors. To support these architectures, we propose the dynamic memory objects allocation based partition, the static allocation based partition, and the static allocation based priority L2 SPM strategy to retain the characteristic of time predictability while attempting to maximize the performance and energy efficiency. The SPM based multicore architectural design and the related allocation methods thus form a comprehensive solution to hard real-time multicore based computing. Our experimental results indicate the strengths and weaknesses of each proposed architecture and the allocation method, which offers interesting on-chip memory design options to enable multicore platforms for hard real-time systems.

A More Comprehensive Approach for Enhancing Business Process Efficiency (BPM에서의 업무효율성 향상을 위한 포괄적 접근법)

  • Rhee, Seung-Hyun;Cho, Nam-Wook;Bae, Hye-Rim
    • The Journal of Society for e-Business Studies
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2007
  • To survive in a global competition, many companies are trying to standardize and visualize Business Process (BP) by implementing Business Process Management (BPM). Recently, enhancing business process efficiency has become one of critical success factors. In this paper, we introduce a two-phase perspective of BP efficiency: Process Engine Perspective (PEP) and Task Performer Perspective (TPP). The former is related to allocation function of BP engine; it is mainly concerned with efficient task allocation to users. The latter phase influences efficiency depending on how users execute tasks assigned to them. Instead of considering each phase separately, we develop a comprehensive method considering the two-phase together, which is more effective for the BP efficiency. We carry out simulation experiment to show the combinational effect of the two phases.

  • PDF

A Study on the Final Evaluation Criteria of Allocation Exceedance Regional in Total Maximum Daily Load (오염총량관리 할당부하량 초과지역의 최종 평가기준에 관한 연구)

  • Oh, Seung Young;Han, Mideok;Kim, Seok Gyu;Ahn, Ki Hong;Kim, Oksun;Kim, Yong Seok;Park, Ji Hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.450-457
    • /
    • 2016
  • The Total Maximum Daily Load (TMDL) is a watershed management system that involves the establishment of the target water quality, the calculation of permission loading (allocation loading), and the control of total pollutants for each unit watershed. Allocation loading is assessed through the comprehensive implementation assessment of the previous year's plan. Assessment results are used for follow-up management measures such as the limit of development and updating of TMDL Management Implementation Plans for the next planning period. Although detailed assessment criteria are important, they are not currently available. Therefore, we suggested assessment criteria by comparing two methods('integration method' and 'separation method') using combination point and non-point discharge loading. We also examined the penalty criteria considering controllable load local government and updating methods of the TMDL Management Implementation Plan for the next planning period.

Optimized Allocation of Water for the Multi-Purpose Use in Agricultural Reservoirs (농업용 저수지의 다목적 이용을 위한 용수의 적정배분)

  • 신일선;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.125-137
    • /
    • 1987
  • The purpose of this paper is to examine some difficulties in water management of agricultural reservoirs in Korea, for there are approximately more than 15,000 reservoirs which are now being utilized for the purpose of irrigation, along with the much amount of expenses and labors to be invested against droughts and floods periodically occurred. Recently, the effective use of water resources in the agricultural reservoirs with a single purpose, is becomming multiple according to the alterable environment of water use. Therefore, the task to allocate agricultural water rationally and economically must be solved for the multiple use of agricultural reservoirs. On the basis of the above statement, this study aims at suggesting the rational method of water management by introducing an optimal technique to allocate the water in an existing agricultural reservoir rationally, for the sake of maximizing the economic effect. To achieve this objective, a reservoir, called "0-Bongje" as a sample of the case study, is selected for an agricultural water development proiect of medium scale. As a model for the optimum allocation of water in the multi-purpose use of reservoirs a linear programming model is developed and analyzed. As a result, findings of the study are as follows : First, a linear programing model is developed for the optimum allocation of water in the multi-purpose use of agricultural reservoirs. By adopting the model in the case of reservoir called "O-Bongje," the optimum solution for such various objects as irrigation area, the amount of domestic water supply, the size of power generation, and the size of reservoir storage, etc., can be obtained. Second, by comparing the net benefits in each object under the changing condition of inflow into the reservoir, the factors which can most affect the yearly total net benefit can be drawn, and they are in the order of the amount of domestic water supply, irrigation area, and power generation. Third, the sensitivity analysis for the decision variable of irrigation which may have a first priority among the objects indicate that the effective method of water management can be rapidly suggested in accordance with a condition under the decreasing area of irrigation. Fourth, in the case of decision making on the water allocation policy in an existing multi-purpose reservoir, the rapid comparison of numerous alternatives can be possible by adopting the linear programming model. Besides, as the resources can be analyed in connection with various activities, it can be concluded that the linear programing model developed in this study is more quantitative than the traditional methods of analysis. Fifth, all the possible constraint equations, in using a linear programming model for adopting a water allocation problem in the agricultural reservoirs, are presented, and the method of analysis is also suggested in this study. Finally, as the linear programming model in this study is found comprehensive, the model can be adopted in any different kind of conditions of agricultural reservoirs for the purpose of analyzing optimum water allocation, if the economic and technical coefficients are known, and the decision variable is changed in accordance with the changing condition of irrigation area.

  • PDF

An Integrated Mathematical Model for Supplier Selection

  • Asghari, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.29-42
    • /
    • 2014
  • Extensive research has been conducted on supplier evaluation and selection as a strategic and crucial component of supply chain management in recent years. However, few articles in the previous literature have been dedicated to the use of fuzzy inference systems as an aid in decision-making. Therefore, this essay attempts to demonstrate the application of this method in evaluating suppliers, based on a comprehensive framework of qualitative and quantitative factors besides the effect of gradual coverage distance. The purpose of this study is to investigate the applicability of the numerous measures and metrics in a multi-objective optimization problem of the supply chain network design with the aim of managing the allocation of orders by coordinating the production lines to satisfy customers' demand. This work presents a dynamic non-linear programming model that examines the important aspects of the strategic planning of the manufacturing in supply chain. The effectiveness of the configured network is illustrated using a sample, following which an exact method is used to solve this multi-objective problem and confirm the validity of the model, and finally the results will be discussed and analyzed.

Analysis of sustainable fashion research trends using topic modeling (토픽 모델링을 이용한 지속가능패션 연구 동향 분석)

  • Lee, Hana
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.4
    • /
    • pp.538-553
    • /
    • 2021
  • As interest in the sustainable fashion industry continues to increase along with climate issues, it is necessary to identify research trends in sustainable fashion and seek new development directions. Therefore, this study aims to analyze research trends on sustainable fashion. For this purpose, related papers were collected from the KCI (Korean Citation Index) and Scopus, and 340 articles were used for the study. The collected data went through data transformation, data preprocessing, topic modeling analysis, core topic derivation, and visualization through a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: consumer clothing consumption behavior and environment, upcycle product development, product types by environmental approach, ESG business activities, materials and material development, process-based approach, lifestyle and consumer experience, and brand strategy. Topics were related to consumption, production, and education of sustainable fashion, respectively. KCI analysis results and Scopus analysis results derived eight topics but showed differences from the comprehensive analysis results. This study provides primary data for exploring various themes of sustainable fashion. It is significant in that the data were analyzed based on probability using a research method that excluded the subjective value of the researcher. It is recommended that follow-up studies be conducted to examine social trends.

Developing a comprehensive model of the optimal exploitation of dam reservoir by combining a fuzzy-logic based decision-making approach and the young's bilateral bargaining model

  • M.J. Shirangi;H. Babazadeh;E. Shirangi;A. Saremi
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2023
  • Given the limited water resources and the presence of multiple decision makers with different and usually conflicting objectives in the exploitation of water resources systems, especially dam's reservoirs; therefore, the decision to determine the optimal allocation of reservoir water among decision-makers and stakeholders is a difficult task. In this study, by combining a fuzzy VIKOR technique or fuzzy multi-criteria decision making (FMCDM) and the Young's bilateral bargaining model, a new method was developed to determine the optimal quantitative and qualitative water allocation of dam's reservoir water with the aim of increasing the utility of decision makers and stakeholders and reducing the conflicts among them. In this study, by identifying the stakeholders involved in the exploitation of the dam reservoir and determining their utility, the optimal points on trade-off curve with quantitative and qualitative objectives presented by Mojarabi et al. (2019) were ranked based on the quantitative and qualitative criteria, and economic, social and environmental factors using the fuzzy VIKOR technique. In the proposed method, the weights of the criteria were determined by each decision maker using the entropy method. The results of a fuzzy decision-making method demonstrated that the Young's bilateral bargaining model was developed to determine the point agreed between the decisions makers on the trade-off curve. In the proposed method, (a) the opinions of decision makers and stakeholders were considered according to different criteria in the exploitation of the dam reservoir, (b) because the decision makers considered the different factors in addition to quantitative and qualitative criteria, they were willing to participate in bargaining and reconsider their ideals, (c) due to the use of a fuzzy-logic based decision-making approach and considering different criteria, the utility of all decision makers was close to each other and the scope of bargaining became smaller, leading to an increase in the possibility of reaching an agreement in a shorter time period using game theory and (d) all qualitative judgments without considering explicitness of the decision makers were applied to the model using the fuzzy logic. The results of using the proposed method for the optimal exploitation of Iran's 15-Khordad dam reservoir over a 30-year period (1968-1997) showed the possibility of the agreement on the water allocation of the monthly total dissolved solids (TDS)=1,490 mg/L considering the different factors based on the opinions of decision makers and reducing conflicts among them.

Data-Compression-Based Resource Management in Cloud Computing for Biology and Medicine

  • Zhu, Changming
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-31
    • /
    • 2016
  • With the application and development of biomedical techniques such as next-generation sequencing, mass spectrometry, and medical imaging, the amount of biomedical data have been growing explosively. In terms of processing such data, we face the problems surrounding big data, highly intensive computation, and high dimensionality data. Fortunately, cloud computing represents significant advantages of resource allocation, data storage, computation, and sharing and offers a solution to solve big data problems of biomedical research. In order to improve the efficiency of resource management in cloud computing, this paper proposes a clustering method and adopts Radial Basis Function in order to compress comprehensive data sets found in biology and medicine in high quality, and stores these data with resource management in cloud computing. Experiments have validated that with such a data-compression-based resource management in cloud computing, one can store large data sets from biology and medicine in fewer capacities. Furthermore, with reverse operation of the Radial Basis Function, these compressed data can be reconstructed with high accuracy.