• Title/Summary/Keyword: Compound enhanced fin

Search Result 2, Processing Time 0.023 seconds

An Experimental Study on Air-Side Performance of Fin-and-Tube Heat Exchangers Having Compound Enhanced Fins Under Wet Condition (복합 전열 촉진 핀이 적용된 핀-관 열교환기의 습표면 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5778-5788
    • /
    • 2015
  • In this study, wet surface heat transfer and friction characteristics of compound enhanced fin-and-tube heat exchangers were experimentally investigated. Louver-finned heat exchangers were also tested for comparison purpose. The effect of fin pitch on j and f factor was negligible. Both j and f factor decreased as number of tube row increased. Compound enhanced fin samples yielded higher j and f factors than louver fin samples. For one row, j and f factors of compound enhanced fin samples were 11% and 43% higher than those of louver fin samples. For two row, those were 8% and 50%, and for three row, those were 17% and 53%. Heat transfer capacities at the same pressure drop of the compound enhanced fin samples were 2.0% for one row, 3.1% for two row and 8.4% for three row larger than those of louver fin samples, Data were compared with predictions of existing louver fin correlations.

An Experimental Study on Air-Side Performance of Fin-and-Tube Heat Exchangers Having Compound Enhanced Fins (복합 전열 촉진 핀이 적용된 핀-관 열교환기의 성능에 대한 실험적 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4364-4374
    • /
    • 2015
  • In this study, heat transfer and friction characteristics of compound enhanced fin-and-tube heat exchangers were experimentally investigated. Louver-finned heat exchangers were also tested for comparison purpose. The effect of fin pitch on j and f factor was negligible. The j factor decreased as number of tube row increased. However, f factor was independent of number of tube row. Louver fin samples yielded higher j and f factors than compound enhanced fin samples. For one row, j and f factors of louver fin were 23% and 27% higher than those of compound enhanced fin. For two row, those were 11% and 8%, and for three row, those were 10% and 9%. However, heat transfer capacities at the same pressure drop of the compound enhanced fins were 6.4% for one row, 11.1% for two row and 13.6% for three row larger than those of louver fins, Existing louver fin correlation overpredicted the present j factors and underpredicted the present f factors.