• 제목/요약/키워드: Compound Sound Wave

검색결과 2건 처리시간 0.017초

축소노즐에서 발생하는 기체유동의 복합 초킹현상에 관한 연구 (A Study of the Compound Choking Phenomenon of Gas Flow in a Converging Nozzle)

  • 이준희;우선훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.147-150
    • /
    • 2002
  • In general, a single gas flow through a converging nozzle is choked when the pressure communications between the downstream and upstream flowfields are broken by the sonic condition of Mach number, M=1. A similar phenomenon may occur In two streams of different stagnation properties flowing side by side in a converging nozzle. In this case, the limiting condition of M=1 for flow choking is no longer applied to such a compound compressible flow. The compound choking phenomenon can be explained by means of a compound sound wave at the nozzle exit. In order to detail the flow characteristics involved in such a compound choking of the two streams, the two-dimensional, compressible, Wavier-Stokes equations have been solved using a fully implicit finite volume method and compared with the results of the one-dimensional theoretical analysis. The computational and theoretical results show that the compound sound wave can reasonably explain the compound choking phenomenon of the two streams in the convergent flow channel.

  • PDF

Compound Choking of a Two-Parallel Stream Through a Convergent Duct

  • Kwon, Jin-Kyung;K. Masusaka;Y. Miyazato;M. Masuda;K. Matsuo;H. Katanoda
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1829-1834
    • /
    • 2001
  • The choking of dual subsonic streams flowing through a convergent duct in contact has been investigated experimentally and theoretically. The experiment was conducted by using blow-down wind tunnel. The condition, when the dual stream flow chocking (compound choking) occurs at the nozzle exit, was explained by one-dimensional analysis of compound sound wave propagation. The experimental results for the condition of compound choking were compared with the prediction from theoretical analysis, and the schlieren optical method using the spark light source has been used to visualize the flowfield.

  • PDF