• Title/Summary/Keyword: Compound Material

검색결과 1,135건 처리시간 0.029초

The study of characteristic III-V compound semiconductor by He-Ne laser (III-V 화합물반도체에서의 He-Ne Laser를 활용한 광 특성 연구)

  • Yu, Jae-Yong;Choi, K.S.;Choi, Son Don
    • Laser Solutions
    • /
    • 제16권1호
    • /
    • pp.1-4
    • /
    • 2013
  • The optical properties of III-V compound semiconductor structure was investgated by photoreflectance (PR). The results show two signals at 1.42 and 1.73eV. These are attributed to the bandgap energy of GaAs, AlGaAs, respectively. Also, AlGaAs region showed weak signal. This signal is attributed to carbon or si defect.

  • PDF

Application of Pseud-superplastic PM Process to Ti-Al Intermetallic Compound for MEMS Parts

  • Miyano, Naoki;Kumagai, Yusuke;Yoshimoto, Masayoshi;Nishimura, Yuta;Tanaka, Shigeo;Ameyama, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1292-1293
    • /
    • 2006
  • A non-equilibrium powder metallurgy processing such as an MA/SPS (Mechanical Alloying / Spark Plasma Sintering) process is examined in a Ti-48moll%Al. TiAl intermetallic compound is a potential light-weight/high-temperature structural material. One of the major problems, however, limiting the practical use of the material is its poor workability. From this point, the powder metallurgy (PM) processing route has been attractive alternative of the conventional processing for such material The MA/SPS process is able to apply to a LIGA process. Optimization of the pseudo-superplasticity enables to fabricate micro-parts made of fine grained ceramics composites of TiAl by the LIGA process.

  • PDF

High functional biodegradable card through annealing (어닐링을 통한 고기능성 생분해성 카드)

  • Sim, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제21권2호
    • /
    • pp.280-286
    • /
    • 2020
  • Cards made from PVC and PET materials do not oxidize or decompose readily, so they are generally incinerated or landfilled after use and cause pollution problems, such as environmental hormones and combustion gases during incineration. In addition, there is a problem of environmental pollution because they are discarded as semi-permanent refuse without being decomposed at landfill. This study attempted to solve this problem using polylactic acid (PLA), which is a representative biodegradable material as a substitute material that can solve the issues with these cards. On the other hand, when the thin card core sheet is made from only PLA material, the physical properties of the material are insufficient, such as the low temperature impact strength, high temperature stability, and poor bending properties, so its use is limited. To solve this problem, the compositional ratio of PLA was reviewed, and the optimal biodegradable compound composition was determined through an examination of the compositions, such as crystallization nucleating agents, additives, and nano compound technology. The high functionalization as a biodegradable card was verified through a laminating process using annealing technology.

A Study on the Optimization of Curing Technology for Improving Properties of Concrete Pavement (콘크리트 포장의 내구성 향상을 위한 양생제 시공기술 최적화 연구)

  • Park, KwonJea;Ryu, SungWoo;Kim, HyungBae;Joo, YoungMin;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • 제15권5호
    • /
    • pp.11-20
    • /
    • 2013
  • PURPOSES : This study is to suggest time to spray curing compound, the amount of curing compound, and the number of times to spray curing compound based on indoor tests. METHODS : Based on the literature review, two methods are used in this study, One is test for water retention of concrete curing material and the other is test for abrasion resistance of concrete surfaces by the rotating-cutter method. Through those methods, curing compound was evaluated. RESULTS : The result of the laboratory experiment for time to spray curing compound indicates that 30 minutes after placing concrete is optimal. For the amount of curing compound, $0.5{\ell}/m^2$ is the minimum quantity for both concretes. Through test of the number of times to spray curing compound, method to spray the whole amount of curing compound in twice is more efficient than it to spray the whole amount at a time. Also, method of separately 30-50 minutes spray is better than method of separately 10-30 minutes spray. CONCLUSIONS : From the testing results, it can be proposed that optimum time to curing compound is $30{\pm}15$ minutes, $0.5{\ell}/m^2$ is efficient for spraying the whole amount of curing compound at a time, and $0.4{\ell}/m^2$ is the best for spraying the whole amount of curing compound in twice, which sprays it in 20 minutes after 30 minutes from placing concrete.

A Study on the Correlation Between Crystallinity and Dispersion Characteristics of Eco-Friendly Semiconductive for Power Cable (전력케이블용 친환경 반도전 컴파운드의 결정화도와 분산 특성의 상관관계에 대한 연구)

  • Han, Jae Gyu;Yun, Jun Hyeong;Seong, Soo Yeon;Jeon, Geun Bae;Park, Dong Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제33권5호
    • /
    • pp.400-404
    • /
    • 2020
  • In this paper, we study the correlation between the crystallinity of semiconductive compounds for eco-friendly power cables and the dispersive properties of carbon black. The crystal structure of the polymer material is advantageous for mechanical properties and heat-resistance. However, the polymer acts as an inhibitor to the dispersibility of carbon black. The purpose of this study is to develop a TPE semiconductive compound technology. The high heat resistance and ultra-smoothness characteristics which are required for high voltage and ultra-high voltage cables should be satisfied by designing and optimizing the structure of a non-crosslinking-type eco-friendly TPE semiconductive compound. The application of excess TPE resin was found to not only inhibit the processability in the compounding process, but also reduced the dispersion properties of carbon black due to higher crystallinity. After the crystallinity of the compound was identified through DSC analysis, it was compared with the related dispersion characteristics. Through this analysis and comparison, we designed the optimal structure of the eco-friendly TPE semiconductive compound.

A Study on Cooling Characteristics of Clathrate Compound with Concentration of TMA (TMA 농도에 따른 포접화합물의 냉각특성에 대한 연구)

  • Kim Jin-Heung;Chung Nak-Kyu;Kim Chang-Oh
    • Journal of Energy Engineering
    • /
    • 제14권1호
    • /
    • pp.18-23
    • /
    • 2005
  • This study is investigated the cooling characteristics of the TMA clathrate compound including TMA (Tri-methyl-amine, (CH₃)₃N) of 20~25 wt% as a low temperature storage material at -5℃ heat source. The results showed that as the concentration of TMA is increased, phase change temperature and specific heat are increased, but the supercooling and retention time of liquid phase are decreased. Especially, low temperature storage material containing TMA 25 wt% has the average of phase change temperature of 5.8℃, supercooling of 8.0℃, retention time of liquid phase for 10 minutes and specific heat of 4.099 kJ/kg℃ in the cooling process. From the results of this study, TMA clathrate compound showed higher phase change temperature than water md supercooling repression effect.

The Production of Microcapsules containing Fragrant material (방향물질을 함유한 마이크로캡슐 제조)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제26권5호
    • /
    • pp.684-690
    • /
    • 2002
  • The microcapsules containing fragrant material as functional compound were produced by in-situ polymerization. The prepolymer was made from urea-formaldehyde(UF) and melamine-formaldehyde(MF) as wall materials of microcapsules. The effects of wall material, dispersing agent and ratio of wall material to core material on the mean diameter variation were investigated. Thermal efficiency and release behavior of microcapsules were measured. The resultant UF and MF microcapsules are capable of preserving fragrant oil for long self-life.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Fatigue properties of nitrided titanium using fluidized bed furnace (유동상로를 이용한 질화처리티타늄의 피로강도 특성)

  • Kim, Min-Gun;Ji, Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제22권1호
    • /
    • pp.142-147
    • /
    • 1998
  • Rotary bending fatigue tests were carried out on the nitrided titanium in order to investigate the effect of nitriding layer on fatigue limit. Main results obtained are as follows. (1) The fatigue limit of nitrided pure titanium is remarkably reduced because of enlargement of grain size at high heat treating temperature and high stress field created from the elastic interaction in the compound layer. (2) Further test using specimen which was removed nitrified layer gradually, were also conducted and it was found that by removing the compound layer the fatigue limit recovered as the level of basic material and rather increased by coming of a diffusion layer. Therefore it is concluded that the surface compound layer generated by nitriding treatment reduced the fatigue limit but diffusion layer increased it.