• Title/Summary/Keyword: Compound Aircraft

Search Result 27, Processing Time 0.022 seconds

Evaluation of Elevated Temperature Strength of Al-Cr-Zr Alloys Strengthened by Nanostructured Crystallines and Intermetallic Compounds (I) (나노 결정립과 금속간화합물상에 의해 강화된 고온, 고강도 Al-Cr-Zr 합금개발 및 특성평가 (I))

  • 양상선
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • Al-Cr-Zr nanocomposite metal powders were prepared by mechnical alloying (MA) in order to develop aircraft structure materials with lighter weight and lower cost than the conventional Ti and Ni alloys. The morphological changes and microstrutural evolution of Al-6wt.%Cr-3wt.%Zr nanocomposite metal powders during MA were investigated by SEM, XRD and TEM. The approximately 50$\mu$m sized Al-Cr-Zr nanocomposite metal powders has been formed after 20 h of MA. The individual X-ray diffraction peaks of Al, Cr and Zr were broadened and peak intensitied were decreased as a function of MA time. The observed Al crystallite size by TEM was in the range of 20 nm, which is a simliar value calculated by Scherrer equation. The microhardness of Al-Cr-Zr nanocomposite metal powders increases alomost linearly with increase of the processing time, reaching a saturation hardness value of 127 kg/$mm^2$ after 20 h of processing. The intermetallic compound phase of $Al_3Zr_4$ in the matrix was identifed by XRD and TEM.

  • PDF

Flight Range and Time Analysis for Classification of eVTOL PAV (eVTOL PAV 유형별 항속거리 및 항속시간 분석)

  • Lee, Bong-Sul;Yun, Ju-Yeol;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.73-84
    • /
    • 2020
  • To overcome ground congestions due to growing number of cars, a lot of companies have proposed personal aerial vehicle (PAV). Among PAV, electric vertical take-off and landing (eVTOL) aircrafts capable of vertical take-off and landing with electric power are drawing attention, and their configurations vary from multicopters to tilt ducted fans. This study tries to analyze the characteristics of each eVTOL design configurations. Parasite drag was calculated using component build up method for Vahana, Aurora, Volocopter representing each eVTOL PAV type of tilt-wing, compound, and multicopter. Wetted area and induced drag was calculated using OpenVSP and XFLR5 that are aircraft design and aerodynamic analysis software. The batteries used in the eVTOL PAV was assumed as Tesla 2170 batteries and flight ranges were calculated. Also, energy consumption and maximum flight time for the given mission profile including take-off and landing, cruising segments were compared for each eVTOL.

Numerical Investigation of Ground Effect of Dual Ducted Fan Aircraft During Hovering Flight (제자리 비행하는 이중 덕트 팬 비행체의 지면 효과에 대한 수치적 연구)

  • Lee, Yujin;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.677-690
    • /
    • 2022
  • By using an actuator disk method based flow solver, aerodynamic analysis is carried out for a dual ducted fan aircraft, which is one of the VTOL compound aircrafts, and its associated ground effect is analyzed. The characteristics and accuracy of the solver for ground effect analysis is evaluated through a comparison with the results obtained from the sliding mesh technique. The aerodynamic performance and flow field characteristics with respect to the distance from the ground are analyzed. As the ground distance decreases, the fan thrust increases, but the deterioration of total normal force and hovering flight efficiency is identified owing to the decrease in the vertical force of the duct, fuselage, and wing. By examining the flow field in the bottom of the fuselage, the ground vortices and fountain flow generated by the interaction of the fan wake and ground are identified, and their influence on the aerodynamic performance is analyzed. The strength and characteristics of outwash with respect to the ground distance and azimuth direction are analyzed through comparison/examination of velocity profile. Influence of the ground effect with respect to collective pitch angle is also identified.

A Study on Electromagnetic Absorption Characteristics of the Anisotropic Composite Structure with Specific Thickness (특정두께를 갖는 이방성복합재 구조의 전자파 응답특성 연구)

  • 정헌달;김덕주;이윤상
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.114-127
    • /
    • 1998
  • A user friendly computer code(EMCOMST; Electro-Magnetic response for COMposite STructures) was developed which provides with computations of the response characteristics such as reflectance and transmittance to the incident wave angles, frequencies, composite thicknesses, ply orientations, and types of backplate as the linearly polarized transverse electro-magnetic wave is emitted to the advanced composite structures. In this investigation were reviewed the electromagnetic characteristics of the continuous orthotropic fiber-reinforced organic matrix composites with or without ferrite fillers, which are actively applied to low-weight and high-strength aircraft structures. Also were calculated the response of the three layered compound structures which have appropriately stacked above-mentioned materials as transmitting layer, absorbing layer, reflection layer, respectively under the specific thickness constraints for mechanical strength design requirements. For the composite structures presented in this study, minimum reflectance value less than -5㏈ can be obtained in the frequency range of 4 to 12 ㎓. In addition, analysis of structures attached isotropic radar absorbing materials(RAM) is facilitated by putting the material properties in the material input card entries adequately.

  • PDF

Numerical Analysis of the Effect of Fuselage of Fan-in-body Aircraft on the Pusher Propeller

  • Kang, Jiwook;Jang, Jisung;You, Younghyun;Hyun, Youngo;Lee, Jonghun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.26-35
    • /
    • 2021
  • In this study, CFD analysis was conducted to compare the aerodynamic performance of the isolated propeller and pusher propeller, which is affected by the wake of wide fuselage. The moving reference frame (MRF) method was used for isolated propeller analysis, while the MRF and sliding mesh method were used sequentially for the pusher propeller to analyze the change in the aerodynamic characteristics based on the azimuth angle. Under the same torque condition, the thrust of the pusher propeller was greater than that of the isolated propeller. Thrust increment of the pusher propeller was mainly generated near the root of the blade where the fuselage wake was concentrated. The net efficiency of the pusher propeller was greater than or equal to that of the isolated propeller. Because of the flat fuselage shape, thrust and torque of the pusher propeller periodically changed with the rotation of the propeller.

The Study on the Fragment Ejection Velocity and Spray Angle from a High Explosive Cylindrical Warhead (실린더형 HE 탄두 폭발 시 파편의 속도 및 발사각 추정방법 연구)

  • Hwang, Changsu;Park, Younghyun;Park, Seikwon;Jung, Daehan;Lee, Moonsik;Kang, Sunbu;Kim, Deuksu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.904-912
    • /
    • 2019
  • We have studied the numerical analysis about the fragment ejection velocity and spray angle when the High Explosive warhead detonated at proximity distance at an aircraft. To study the physical quantities about the warhead components is very important to assessment the vulnerability of aircraft. Generally, the physical quantities about the components of a warhead such as the mass, length, diameter and charge to mass ratio are unknown. Therefore, it is required to estimate the physical quantities by using physical continuities of similar threats. The empirical formulas to understand the dependence among charge to mass ratio, length and diameter ratio were driven by using the physical parameters of similar threatening such as terrier, sparrow. As a result, we confirmed that the dead mass ratio was closed to 20% of warhead mass since the metal case of the proximity threat acts as a simple carrier. This implies that the effective length and diameter of High Explosive Compound is smaller than the length and diameter of warhead, and become a key to understand the large ejection gradient velocity and small spray angle of fragments within 6 degree.

Analysis of Paint Used for a Helicopter Operated in the Korean War through the History of Paint Application (페인트 도장의 역사를 통해 본 6·25전쟁 운용 헬기의 도료분석)

  • Kang Hyunsam;Jang Hanul;Choi Yangho
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.133-152
    • /
    • 2023
  • This study references preceding studies to examine the history of paint application techniques using various paints in the past, with the aim to contribute to the long-term preservation of large military cultural heritage assets situated outdoors. To this end, the study compared the findings of preceding research with the findings of an analysis conducted on a H-13 helicopter housed at the War Memorial of Korea. Upon collecting and analyzing samples from three grounded WWII aircraft from above-ground by preceding studies, it was confirmed from each sample that the various chemical properties of chrome ensured the effectiveness of the protective coating. The compound was first tested as a corrosion-inhibiting pigment in the early 1940s and proved its excellent moisture-resistant properties over the course of 80 years, despite the deterioration of the paint layer and long-term exposure to the natural environment. For this reason, it has been widely used as a corrosion inhibitor for aluminum alloys in the aviation industry. In other word, the most widely-used material for preventing corrosion was an organic primer containing chromate. In this study, based on the paint analysis of a H-13 helicopter operated in the Korean War, it was shown that the second layer, consisting of the primer, contains chromium oxide (Cr2O3). In addition, it was estimated that red lead tetraoxide (Pb3O4) was used for the vehicle. Analysis results and data from previous studies can help to confirm the continued effectiveness of corrosion prevention function provided by chromate. Meanwhile, the result of infrared spectroscopy analysis confirmed the use of alkyd resin. In the future, comparisons with a more diverse range of artifacts will allow the identification of changes in the manufacturing technology of paints used to protect alloys from corrosion.