• Title/Summary/Keyword: Composting process

Search Result 213, Processing Time 0.018 seconds

Prevalence of Pathogenic Bacteria in Livestock Manure Compost and Organic Fertilizer (가축분퇴비와 유기질비료에서 병원성박테리아의 분포도 분석)

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Yun, Jong-Chul;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.824-829
    • /
    • 2011
  • In recent years, there has been an increasing public concern about fecal contamination of water, air and agricultural produce by pathogens residing in organic fertilizers such as manure, compost and agricultural by-products. Efforts are now being made to control or eliminate the pathogen populations at on-farm level. Development of efficient on-farm strategies to mitigate the potential risk posed by the pathogens requires data about how the pathogens prevail in livestock manure composts and organic fertilizers. Microbiological analysis of livestock manure composts and organic fertilizers obtained from 32 and 28 companies, respectively, were conducted to determine the total aerobic bacteria count, coliforms, Escherichia coli count and the prevalence of Staphylococcus aureus, Bacillus cereus, Salmonella spp., Escherichia coli O157:H7, Listeria monocytogenes, and Cronobacter sakazakii. The total aerobic bacteria counts in the livestock manure composts and organic fertilizers were in the range of 7 to $9log\;CFU\;g^{-1}$ and 4 to $6log\;CFU\;g^{-1}$, respectively. In the livestock manure composts, coliforms and E. coli were detected in samples obtained from 4 and 2 companies, respectively, in the range of 2 to $5log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In the organic fertilizers, coliforms and E. coli were detected in samples obtained from 4 and 1 companies, respectively, in the range of 1 to $3log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In 3 out 32 compost samples, B. cereus was detected, while other pathogens were not detected. In 28 organic fertilizers, no pathogens were detected. The complete composting process can result in the elimination of pathogens in livestock manure compost and organic fertilizer. The results of this study could help to formulate microbiological guidelines for the use of compost in environmental-friendly agriculture. This research provides information regarding microbiological quality of livestock manure compost and organic fertilizer.

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

The Patterns of CH4 and N2O fluxes from used Litter Stockpile from Korean Native Cattle (Hanwoo) (사용한 한우 깔짚에서 배출되는 CH4 및 N2O의 배출 특성)

  • Park, Kyu-Hyun;Choi, Dong-Yoon;Yoo, Yong-Hee
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.145-150
    • /
    • 2012
  • This study was conducted to measure methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from the 6 month old litter stockpile used for korean native cattle (Hanwoo) from August 3, 2007 to October 4, 2007. Daily mean $CH_4$ emissions was peaked to 273.013 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}1.047{\mu}g\;m^{-2}\;s^{-1}$) on first day and then gradually decreased to 2.309 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.061{\mu}g\;m^{-2}\;s^{-1}$) at the end of this experiment. Daily mean $N_2O$ emissions was as little as 0.269 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.018{\mu}g\;m^{-2}\;s^{-1}$) on first day, but exponentially increased up to 3.569 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.454{\mu}g\;m^{-2}\;s^{-1}$) on 43rd day and then slowly decreased to 1.888 ${\mu}g\;m^{-2}\;s^{-1}$ (SE : ${\pm}0.012{\mu}g\;m^{-2}\;s^{-1}$) at the end of this experiment. Carbon dioxide equivalent ($CO_2$-eq), calculated by global warming potentials of $CH_4$ or $N_2O$, of $CH_4$ on first day occupied approximately 99% of sum of $CO_2$-eq of $CH_4$ and $N_2O$. Methane emissions decreased and $N_2O$ emissions increased so that $CO_2$-eq ratio of $CH_4$ to $N_2O$ was 50:50 on 34th day. The effect of $N_2O$ on the ratio was increase thereafter. The ratio of daily mean $CH_4$ and $N_2O$ emissions to daily error of the mean was calculated to find daily fluctuation of $CH_4$ and $N_2O$ emissions. The ratio of $CH_4$ was less than 1.0% till 11th day but increased to 10.9% on 57th day. The ratio of $N_2O$ (0.4%~51.0%) was higher than that of $CH_4$, showing high in early stage and then gradually decrease, which was different from the pattern of $CH_4$. The ratio of daily mean emissions to daily error of the mean was little in case of active $CH_4$ or $N_2O$ generation period, which would be caused by the temporal and spatial heterogeneity of composting process. Hence more air supply on early stage to decrease $CH_4$ generation and proper turning to reduce spatial heterogeneity are needed to mitigate greenhouse gas emissions.