• Title/Summary/Keyword: Composting Fertilizer

Search Result 164, Processing Time 0.025 seconds

A Study on the Manure Management and Effectively Utilization (가축배설물 처리.이용 평가 및 효율적 활용방안)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.69-74
    • /
    • 2009
  • A survey questionnaire that addressed the issues to manure compost producers and users was prepared. The questionnaire addressed three main topics as follows: 1) types of manure treatment and composting facilities are being operated, 2) quantity of manure compost produced and used, 3) problems experienced in producing and using manure compost. A total of 30 manure compost producers and 10 manure compost users were interviewed. Solid manure are applied to composting. Slurry and wastewater are simplified aeration method to produce liquid fertilizer. The open elongated type manure composting are generally used on manure compost centers jointly used by several farms. The amount of annually manure compost production was most common in the range of $5{\sim}10$ thousand tons per manure compost center. The manure compost utilization and cucumber yield were mostly $6{\sim}15$ tons and $20{\sim}27$ tons per 10a of cucumber farmland, respectively. Environmentally friendly use both of manure compost and chemical fertilizer are recommended for natural recycling agriculture.

  • PDF

Study on the Lowering of NaCl Content by Co-composting Food Wastes (저농도 식염을 함유하는 음식물쓰레기 퇴비제조)

  • Lee, In-Bog;Park, Chang-Kyu;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.17-25
    • /
    • 2001
  • High salt content in food waste limit use as the potential source of compost. Since sodium chloride content should be lower than one percent to meet requirement for agricultural use of compost, we attempted use of three kinds of co-composting material for food wastes compost, which were fermented, dried, and fresh types of amendments which included pig manure, sawdust and puffed rice hull. Food wastes were composted well and stabilized after around the 40th days of composting. Little difference were found between composts amended sawdust and puffed rice hull. The result indicated that puffed rice hull could be used as a good alternative of sawdust. Because sawdust or puffed rice hull were mixed as amendments to control water contents and to dilute high NaCl content of compost material, the C/N ratios of the final products were significantly high over 40. However, NaCl contents of final products were dropped to less than percent on the fresh weight basis by mixing food wastes and the above amendments with the optimum rates.

  • PDF

The Effect of Application Levels of Slurry Composting and Bio-filtration Liquid Fertilizer on Soil Chemical Properties and Growth of Radish and Corn (총각무와 옥수수 재배시 SCB액비 시용수준이 토양화학성과 생육에 미치는 영향)

  • Kang, Seong-Soo;Kim, Min-Kyeong;Kwon, Soon-Ik;Kim, Myong-Suk;Yoon, Sung-Won;Ha, Sang-Gun;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1306-1313
    • /
    • 2011
  • A liquid fertilizer treated with slurry composting and biofiltration (SCB) process has been applied increasingly on agricultural field but the effects on the soil properties and crop production has not been throughly evaluated. This study was conducted to investigate the effect of the SCB application on soil chemical properties and the growth of radish and corn. SCB liquid fertilizer as a basal fertilization was treated with five levels based on $6kg\;10a^{-1}$ for radish and $10kg\;10a^{-1}$ for corn. The experimental design was the completely randomized block design with five levels and three replicates. Electrical conductivity (EC), $NO_3$-N, Exch. K and Exch. Na increased depending on the treatment levels of SCB. There were no changes in soil organic matter, Avail. $P_2O_5$, Exch. Ca and Exch. Mg. EC, $NO_3$-N and Exch. Na content decreased as precipitation increased. Especially, they decreased up to the initial condition before the treatment after the heavy rainy season in 2008. Although Exch. K decreased at the rainy season, they remained relatively higher content after the experiment on August, 2008. Fresh weight and the amount of N uptake of radish increased due to the levels of SCB, but corn did not present any significant increase. It is recommended that we need to decide the proper amount of SCB as well as the application method on the field to increase the productivity and decrease environmental stress. Additional experiments also need to clarify the effect of the trace element and heavy metal accumulations due to long term application of SCB.

Investigation on the Amount of Water Evaporation from Composting Facilities Operated in Swine Farms (양돈농가에서 퇴비화시설별 수분변화량 분석에 관한 연구)

  • Kwag, J.H.;Choi, D.Y.;Park, C.H.;Jeong, J.H.;Kim, J.H.;Yoo, Y.H.;Jeon, B.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2008
  • The results of the research on the amount of water evaporation from composting facilities operated in swine farms are below. The number of swine per a farm was 1433 head/farm for a Simple Composting Facility (SCF) and 3500 head/farm for a Escalator composting facility(ECF) system. The capacities of the SCF and the ECF were $0.33m^3/head$ and $0.25m^3/head$, respectively. The ECF had 24.2% less capacity than the SCF. The average water contents in the swine manure for the CP and the ECF of the surveyed farms were 86.8% and 85.7%, respectively, which revealed the ECF had 1.3% less average water content than the SCF. Daily water inputs into the SCF and the ECF were $4.1kg/m^3/day$ and $6.5kg/m^3/day$, respectively. The ECF had approximately 36.9% higher water input than the SCF. Fermentation temperatures during the composting period for the SCF and the ECF were up to $45^{\circ}C$ and $70^{\circ}C$, respectively. The decreases in water contents per each square meter for the SCF and the ECF were 3.7 kg and 5.2 kg, respectively. The ECF lost approximately 28.8% more water content than the ECF, which would be caused by the difference of fermentation temperature between two systems. Fertilizer components after composting were examined. Nitrogen contents of the SCF and the ECF were similar (0.84% and 0.86%, respectively) and ${P_2}{O_5}$ contents were 0.78% and 0.74%, respectively, showing the SCF had slightly higher content than the ECF. However, OM and OM/N did not show the difference between two systems. Hence, efforts to increase composting efficiency with considerations of the water content of swine manure, fermentation temperature, and water evaporation potential should be done when the SCF and the ECF were used in swine farms.

  • PDF

Studies on the Utilization of Exothermic Heat Composting during Winter Season (동계(冬季) 퇴비부숙열(堆肥腐熟熱) 이용(利用)에 관(關)한 연구(硏究))

  • Kim, Sung-Pil;Park, Young-Dae;Joo, Young-Hee;Uhm, Dae-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.283-288
    • /
    • 1984
  • This study was conducted to evaluate the characteristics of exothermic heat and compost generated from decomposition of organic wastes composts were piled up with various sources of raw materials of rice straw, rice husk, human and animal wastes. The duration of generated exothermic heat during compositing process was longer in mixture piles of rice straw/rice husk ratio of 1:1 compared to rice straw alone. Temperature in compost piles added with phosphate as fused superphosphate fertilizer was rapidly increased at the earlier stage of composting and gradually decreased in 30 days compared to the check. pH of compost showed 5.5 at initial piling, however, its peak appeared 8.8 in 10 days with rapidly increasing temperature of compost and maintained around 8.3 after one month. Compost of mixture of rice straw and chicken droppings maintained temperature ranges of 30 to $65^{\circ}C$ for 39 days, compost of rice straw, rice husk and chicken droppings for 69 days, piles of rice straw, rice husk and hog manure for 56 days, mixture of rice straw, rice husk and cow manure for 66 days and compost of rice straw, rice husk and human wastes for 21 days.

  • PDF

Amino Acids in Humic Acids Extracted from Organic By-product Fertilizers (유기질 부산물 비료에서 추출한 부식산 중 아미노산 특성)

  • Yang, Jae-E.;Kim, Jeong-Je;Shin, Myung-Kyo;Park, Yong-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.128-136
    • /
    • 1998
  • Most of total nitrogen in the surface soil exists in organic forms, of which amino acid-N is the major fraction. By-product fertilizers provide soil with humic substances, and humic acid is an essential component of humus. Amino acids(AAs) are easily converted to inorganic-N forms and thus play an important role in N fertility. This experiment was conducted to investigate the contents and distributions of AAs in humic acids which were extracted from the commercial by-product fertilizers of different composting materials. Total contents of AAs in humic acids ranged from 1.2 to 5.6%, of which neutral AAs were the highest with ranges of 0.8~4.5%. AAs contents in fertilizers composted from the plant residues such as leaf litter, sawdust and bark were in an order of neutral>acidic>basic AAs. In contrast, those from animal wastes, such as poultry and pig manures, were in an order of neutral>basic>acidic AAs. Distributions of total, acidic and neutral AAs were in the respective order of leaf litter>sawdust>pig manure>poultry manure>peat, bark>sawdust>leaf litter>peat and leaf litter>sawdust>bark>peat. Distributions of the basic AAs were in the reversed order of the acidic AAs. In bark fertilizer with increasing compost maturity, contents of the acidic AAs were increased in compensation for the decreases in those of neutral and basic AAs. Results demonstrated that distributions of amino acids in humic acid of by-product fertilizers were different from composting raw materials and degrees of humification.

  • PDF

Comparison of compost product quality with nature soil standard (국내생산퇴비의 부숙토 기준에 대한 적합성 검토)

  • Choi, H.G.;Lee, J.A.;Kim, K.Y.;Lee, K.C.;Lee, J.G.;Park, K.H.;Park, J.S.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2001
  • As construction and expansion of wastewater treatment works is continuing, generation of sludge is increasing. Bur most sludge is not used appropriately but disposed by landfill dumping to sea. Furthermore direct landfilling of sludge cake containing moisture content over 75% has been legally prohibited since 2001 that's enforcement will be more strict in 2003. Such a situation means nowadays recycling of organic waste such as sludge and food waste is necessary. Composting is one of recycling methods commonly and used as an effective means of stabilizing organic waste and then compost can be used as fertilizer. However fertilizer law management which include standard of compost products and other fertilizers applied all sludge products indiscriminiately and was not flexible. So MOE has graded organic composts according to land applications to improve recycle of organic wastes. The classified organic compost which contains low contaminants has been possible to use as various purpose. This study enalyzed 30 samples which were raw materials for compost and compost products management well and to estimate the quality of compost products. Heavy metals were measured in Raw materials and OM/N, NaCl and VS were tested in compost products as well as heavy metals. As a result, approximate 10% of raw materials was not suitable to the grade A and 6.7% over the grade B of the regulation on raw materials for compost. In the case of 30 produced compost propducts approximate, 57% of composts was not compatible with the grade A and B of the regulation on composting product. The qualities of compost products were worse than raw materials, because the compost products have more regulation item raw materials have.

  • PDF

Minimizing Nutrient Loading from SCB Treated Paddy Rice Fields through Water Management (SCB 액비 시용 논에서 물관리를 통한 양분의 수계 부하 최소화 방안)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Jung, Goo-Bok;Hong, Seung-Chang;Chae, Mi-Jin;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.671-675
    • /
    • 2012
  • This study was conducted to establish the BMPs (Best Management Practices) for preventing pollutant loadings from paddy rice field applied livestock liquid manure from 2008 through 2011. Cultivated paddy rice fields (Gyeonggi province, Korea) were treated with SCB (Slurry composting and bio-filtration process) liquid fertilizer. The BMPs for paddy rice field developed in this study includes: 1) the controlling a drainage water gate in paddy rice field from right after SCB liquid fertilizer application to 3 weeks after rice transplanting; 2) livestock liquid fertilizer application to paddy rice soils in 20 days before rice transplanting to encourage the utilization of liquid fertilizer; 3) preservation of surface water depth to 5 cm in a paddy field right after SCB liquid fertilizer applied to minimize a water pollution and enhance the utilization of liquid fertilizer; and 4) blocking a water gate at least for 2 days to inactivate E. coli survival. The findings of this study will provide useful and practical guideline to applicators of agricultural soil in deciding appropriate handling and time frames for preventing pollution of water quality for sustainable agriculture.

Nitrogen Isotope Compositions of Synthetic Fertilizer, Raw Livestock Manure Slurry, and Composted Livestock Manure (화학비료, 가축분뇨 및 퇴비의 질소동위원소비)

  • Lim, Sang-Sun;Lee, Sang-Mo;Lee, Seung-Heon;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.453-457
    • /
    • 2010
  • To investigate the difference in N isotope ratio ($^{15}N/^{14}N$, expressed as ${\delta}^{15}N$) among N sources (synthetic fertilizer, livestock manure, and manure compost), eight synthetic fertilizer, four livestock manure, and thirty-seven compost samples were collected and analyzed for ${\delta}^{15}N$. The mean ${\delta}^{15}N$ values of N sources were $-1.5{\pm}0.5$‰ (range: -3.9 to +0.5‰) for synthetic fertilizer, $+6.3{\pm}0.4$‰ (+5.3 to +7.2‰) for manure, and $+16.0{\pm}0.4$‰ (+9.3 to +20.9‰) for compost. The lower ${\delta}^{15}N$ of synthetic fertilizer was attributed to its N source, atmospheric $N_2$ of which ${\delta}^{15}N$ is 0‰ Meanwhile, more $^{15}N$-enrichment of compost than manure was assumed to be resulted from N isotopic fractionation (faster loss of $^{14}N$-bearing compound than $^{15}N$) associated with N loss particularly via $NH_3$ volatilization during composting. Therefore, our study shows that ${\delta}^{15}N$ values could successfully serve in discriminating two major N sources (synthetic fertilizer and compost) in agricultural system.

Exploring a zero food waste system for sustainable residential buildings in urban areas

  • Oh, Jeongik;Lee, Hyunjeong
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.46-53
    • /
    • 2018
  • This study explores the environmentally innovative and low-impact technology, a zero food waste system (ZFWS) that utilizes food waste and converts it into composts or biofuels and curtails carbon emissions. The ZFWS not just achieves food waste reductions but recycles food waste into fertilizer. Based on a fermentation-extinction technique using bio wood chips, the ZFWS was employed in a field experiment of the system installed in a large-scale apartment complex, and the performance of the system was examined. The on-site ZFWS consisted of three primary parts: 1) a food waste slot into which food waste was injected; 2) a fermentation-extinction reactor where food waste was mixed with bio wood chips made up of complex enzyme and aseptic wood chips; and 3) deodorization equipment in which an ultraviolet and ozone photolysis method was employed. The field experiment showed that food waste injected into the ZFWS was reduced by 94%. Overall microbial activity of the food waste in the fermentation-extinction reactor was measured using adenosine tri-phosphate (ATP), and the degradation rate of organic compounds, referred to as volatile solids, increased with ATP concentration. The by-products generated from ZFWS comply with the national standard for organic fertilizer.