• Title/Summary/Keyword: Composites Material

Search Result 2,193, Processing Time 0.025 seconds

Finite element analysis of slender HSS columns strengthened with high modulus composites

  • Shaat, Amr;Fam, Amir
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.19-34
    • /
    • 2007
  • This paper presents results of a non-linear finite element analysis of axially loaded slender hollow structural section (HSS) columns, strengthened using high modulus carbon-fiber reinforced polymer (CFRP) longitudinal sheets. The model was developed and verified against both experimental and other analytical models. Both geometric and material nonlinearities, which are attributed to the column's initial imperfection and plasticity of steel, respectively, are accounted for. Residual stresses have also been modeled. The axial strength in the experimental study was found to be highly dependent on the column's imperfection. Consequently, no specific correlation was established experimentally between strength gain and amount of CFRP. The model predicted the ultimate loads and failure modes quite reasonably and was used to isolate the effects of CFRP strengthening from the columns' imperfections. It was then used in a parametric study to examine columns of different slenderness ratios, imperfections, number of CFRP layers, and level of residual stresses. The study demonstrated the effectiveness of high modulus CFRP in increasing stiffness and strength of slender columns. While the columns' imperfections affect their actual strengths before and after strengthening,the percentage gain in strength is highly dependent on slenderness ratio and CFRP reinforcement ratio, rather than the value of imperfection.

Enhancement of Dimensional Stability of Compressed Open Cell Rigid Polyurethane Foams by Thermo-Mechanical Treatment

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • Thermo-mechanical treatment process of a compressed open-cell rigid polyurethane foam (OC-RPUF), which was fabricated for the vacuum insulation panel (VIP), was studied to obtain an optimum condition for the dimensional stability by the relaxation of compressive stress. Thermo-mechanical deformation of the sample OC-RPUF was shown to occur from about $120^{\circ}C$. Yield stress of 0.36 MPa was shown at about 10% yield strain. And, densification of the foam started to occur from 75% compressive strain and could be continued up to max. 90%. Compression set of the sample restored after initial compression to 90% at room temperature was ca. 82%. Though the expansion occurred to about twice of the originally compressed thickness in case of temperature rise to $130^{\circ}C$, it could be overcome and the dimensional stability could be maintained if the constant load of 0.3 MPa was applied. As the result, a thermo-mechanical treatment process, i.e, annealing process at temperature of $130{\sim}140^{\circ}C$ for about 20 min as is the maximum compressed state at room temperature, should be required for dimensional stability as an optimum condition for the use of VIP core material.

Formation and Preservative Effectiveness of Water-Insoluble Copper Compound in Wood Treated with Copper Sulfate and Sodium Carbonate (황산구리와 탄산나트륨 처리 목재 내의 물불용성 구리화합물의 생성과 방부효력)

  • Kim, Jin-Kyung;Lee, Jong-Shin
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.358-364
    • /
    • 2008
  • Wood-inorganic material composite (WIC) was prepared by impregnating wood with copper sulfate ($CuSO_4\;5H_2O$) solution and by immersed wood in sodium carbonate($Na_2CO_3$) solution in order to introduce insoluble copper compounds {copper carbonate hydroxide, $CuCO_3\;Cu(OH)_2$} into the wood to give fungicidal effects in treated-wood. The weight percent gains (WPGs) of treated wood reached maximum value by impregnation of 20% copper sulfate solution and immersion in about 15% sodium carbonate solution for 24 hrs. Inorganic substances were present mainly in the lumina and cross-field pitting of tracheides. These substances were proved to be the insoluble copper carbonate hydroxide against water by the energy dispersive X-ray analyzer in conjunction with a scanning electron microscope (SEM-EDXA). The treated specimens showed high preservative effectiveness because the weight losses were hardly occurred by the fungi degradation test.

  • PDF

Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings (저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가)

  • Byun, GyeongJun;Kim, JaeIck;Lee, Changhee;Kim, SeeJo;Lee, Seong
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.

Viscoelastic Bending Behaviors of Unidirectional Fiber Reinforced Composite C-rings with Asymmetric Material Properties (비대칭물성을 고려한 일축방향 섬유강화 복합재료 C링의 점탄성적 거동해석)

  • 이명규;이창주;박종현;정관수;김준경;강태진
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.18-30
    • /
    • 2000
  • In order to optimize the design of unidirectional fiber reinforced composite C-rings, a viscoelastic load relaxation behavior was analyzed under a point load. Initially, the deflection and bending stiffness were calculated based on the elastic beam theory and the viscoelastic relaxation and creep behaviors were derived from the elastic solution using the correspondence theorem. Besides the orthotropic mechanical properties of the composite, asymmetric mechanical property due to the different tensile and compressive properties were also considered. Except the deviation affected by the relatively large thickness of the specimen compared to the radius, the calculated relaxation showed good agreement with the experimental result.

  • PDF

Development of Payload Kick Motor for KSR-III 1. Design of Downscaled Structure & Processing Method (KSR-III 탑재부 킥모타 개발 1. 축소형 연소관 구조 및 공정 설계)

  • 조인현;박재성;오승협
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • Thus paper summarizes the procedures to develop the downscaled payload kick motor for KSR-III by KARI. Filament winding-a well-known method of manufacturing composite motor case - is adopted to reduce structural weight. Netting and lamination theories are used to determine adequate winding thickness under required internal pressure. Dome shapes are designed considering feasible winding patterns and easiness of mandrel manufacturing. T-800 carbon fiber and Novolac type resin are selected for weight-reduction. The separate mandrels are disassembled and removed after filament winding. The manufacturing process of real payload kick motor is developed from the design experience of downscaled ones.

Mixed-Mode Fatigue Characteristics of Composite/Metal Interfaces (복합재료/금속 계면의 혼합모드 피로 특성)

  • Baek, Sang-Ho;Kim, Won-Seock;Jang, Chang-Jae;Lee, Jung-Ju
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2010
  • In most engineering structures, fracture often takes place due to fatigue. Therefore, many studies about the effect of the various mode-mixities on fatigue characteristics have been performed. However, most of the former studies only address metal/metal interfaces or delamination of composite. In this study, the fatigue characteristics of composite/metal interfaces are investigated. The fatigue tests were performed using single leg bending(SLB)specimens that comprise composite and steel bonded to each other using co-cure bonding method. This paper focuses on fatigue characteristics depending on different mode ratios$(G_{II}/G_T$. The overall results obtained in this study show that the crack propagation rate increases with the mode II loading component.

Fabrication of Micro-electrodes using Liner Block Moving Electrical Discharge Grinding and Characteristics of Micro-hole Machining of Graphene Nanoplatelet-reinforced Al2O3Composites (블록직선이송 방전연삭에 의한 미세전극 가공 및 그래핀 강화 알루미나 복합소재의 마이크로 홀 가공특성)

  • Jeong, Hyeon-A;Lee, Chang Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.149-156
    • /
    • 2017
  • Graphene nanoplatelet (GNP)-reinforced alumina ($Al_2O_3$) is a promising material for micro-partapplications, particularly micro-nozzle shapes, because of its excellent wearresistance. In this study, a $Al_2O_3$/GNPcomposite with 15 vol% graphene nanoplatelets (GNP) was highly densified and fabricated via spark plasma sintering for micro-electrical discharge drilling (Micro-ED drilling) and the wear resistance property of the composite is evaluated via the ball-on-disk method. In addition, the diameter and shape of the micro-electrodes machined by wire electrical discharge grinding (WEDG), block electrical discharge grinding (BEDG), and new linear block moving electrical discharge grinding (LBMEDG) methods are systematically compared and analyzed to observe the micro-hole machining in the micro-ED drilling of the $Al_2O_3$/15vol% GNP composite.

Analysis of Thermal Response of Rectangular Plates Made of Functionally Graded Materials (경사.기능재료 사각평판의 열적거동 해석)

  • 민준식;강호식;정남희;송오섭
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.78-84
    • /
    • 2004
  • In this paper, a study of thermal response of two types of functionally graded materials (FCM) plates composed of $\textrm{Al}_2\textrm{O}_3$ and Ti-6Al-4V is presented. The material properties of the functionally graded plates are assumed to vary continuously through the thickness of the plate according to a power law distribution of the volume fraction of the constituents. It is supposed that the top and bottom surfaces of the plate are heated and kept as constant thermal boundary conditions. The fundamental equations for rectangular plates of FGM are obtained using Hamilton's variational principles. The solution is obtained in terms of Navier Solution. The influence of volume fraction and temperature is studied on the static deflection and natural frequency of FCM plate.

An Experimental Study on the Free Vibration of Composite Plates with Various Shapes (다양한 형상을 갖는 복합재료 판의 자유진동에 대한 실험적 연구)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 1999
  • This paper describes the results of experiments to analyze the free vibration of the laminated composite and hybrid composite plates with various shapes and boundary conditions. The materials of specimens were the carbon fiber reinforced plastic (CFRP), the glass fiber reinforced plastic (GFRP), the GFRP-Aluminum hybrid composite and the CFRP-CFRP hybrid composite. The natural frequencies and nodal patterns of plates with various shapes were experimentally obtained by impact exciting test using an impact hammer and an accelerometer. The experimental results were presented with normalized frequency parameters. The effects of composite material properties, fiber orientation angles, various geometrical shapes and boundary conditions on the vibration characteristics of composite plates were evaluated. To compare and verify these experimental results, the finite element analysis was carried out, and was well agreed with experimental results.

  • PDF