• 제목/요약/키워드: Composite wall

검색결과 555건 처리시간 0.027초

Several Issues Closely Related to Construction in the Structural Design of Wuhan Center

  • Jian, Zhou
    • 국제초고층학회논문집
    • /
    • 제11권3호
    • /
    • pp.189-196
    • /
    • 2022
  • The practical difficulties of construction will impose many restrictions on the structural design, and the construction method can also provide unexpected ideas for solving design problems. Through the discussion of three issues closely related to construction in the structural design of Wuhan Center, this paper illustrates the importance of in-depth consideration of the construction situations in the structural design stage. The topics of "Connection between Embedded Steel Plates in Steel Plate Composite Shear Wall" and "Connection Joint between Outrigger Truss and Core Wall" are about how to facilitate on-site construction by simplifying and optimizing detail design. The topic of "Adjusting Internal Force Distribution by Optimizing Construction Sequence" is about how to make the construction process a tool for structural design.

현장타설 중단열 RC벽체의 구조적 성능 (Structural Performance for Sandwich Insulation of Reinforced-Concrete)

  • 박준호;유정호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.19-20
    • /
    • 2015
  • Building exterior wall's energy loss is very high rate comparing to all part of a buildings. And it account for upper 40% of cooling and heating load. So many studies conducted improving insulation performance of building's exterior, appeared about sandwich insulation wall which could be gaining merit of traditional insulation method those are exterior insulation and interior insulation. In this study, we inform structural performance of sandwich insulation wall for RC wall. For this, first, we define each wall's role and design sandwich insulation wall. At last, analyze structural performance of sandwich insulation wall. This study can contribute to apply it safely where side wall which toilet, stair area, etc.

  • PDF

Performance of cold-formed steel wall frames under compression

  • Pan, Chi-Ling;Peng, Jui-Lin
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.407-420
    • /
    • 2005
  • This study presents the strength of braced and unbraced cold-formed steel wall frames consisting of several wall studs acting as columns, top and bottom tracks, and bracing members. The strength and the buckling mode of steel wall frames were found to be different due to the change of bracing type. In addition, the spacing of wall studs is a crucial factor to the strength of steel wall frames. The comparisons were made between the test results and the predictions computed based on AISI Code. The related specifications do not clearly provides the effective length factors for the member of cold-formed steel frame under compression. This paper proposes effective length factors for the steel wall frames based on the test results. A theoretical model is also derived to obtain the modulus of elastic support provided by the bracing at mid-height of steel wall frames in this research.

복합재료 경전철의 차체구조 해석 (A Structural Analysis on the Light Rail Vehicle Body with Composite Material)

  • 이영신;김재훈;이호철;길기남;박병준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.437-446
    • /
    • 1999
  • The structural behavior of the composite material light rail vehicle body are investigated. Composite material is very useful for light rail vehicle structure due to its high specific strength and lightweight characteristics. The main carbody is made of aluminum alloy. The side wall and roof with composite panels can reduce total vehicle weight about 2000kg. In addition, with the lower density of the foam, enhances lightness in the panel and to save the operation expenses. The finite element analysis code, ANSYS is used to evaluate the stability of the body structure under the various load conditions.

  • PDF

Finite element modelling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction

  • Anwar Hossain, K.M.;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • 제21권6호
    • /
    • pp.659-676
    • /
    • 2005
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. The behaviour of such walling under in-plane shear is important in order to utilise this system as shear elements in a steel framed building. Steel sheet-concrete interface governs composite action, overall behaviour and failure modes of such walls. This paper describes the finite element (FE) modelling of the shear behaviour of walls with particular emphasis on the simulation of steel-concrete interface. The modelling of complex non-linear steel-concrete interaction in composite walls is conducted by using different FE models. Four FE models are developed and characterized by their approaches to simulate steel-concrete interface behaviour allowing either full or partial composite action. Non-linear interface or joint elements are introduced between steel and concrete to simulate partial composite action that allows steel-concrete in-plane slip or out of plane separation. The properties of such interface/joint elements are optimised through extensive parametric FE analysis using experimental results to achieve reliable and accurate simulation of actual steel-concrete interaction in a wall. The performance of developed FE models is validated through small-scale model tests. FE models are found to simulate strength, stiffness and strain characteristics reasonably well. The performance of a model with joint elements connecting steel and concrete layers is found better than full composite (without interface or joint elements) and other models with interface elements. The proposed FE model can be used to simulate the shear behaviour of composite walls in practical situation.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

Fabrication of Uniform Hollow Silica Nanospheres using a Cationic Polystyrene Core

  • Yun, Dong-Shin;Jang, Ho-Gyeom;Yoo, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1534-1538
    • /
    • 2011
  • Uniform, hollow nanosilica spheres were prepared by the chemical coating of cationic polystyrene (cPS) with tetraethylorthosilicate (TEOS), followed by calcination at 600 $^{\circ}C$ under air. cPS was synthesized by surfactant-free emulsion polymerization using 2,2'-azobis (2-methyl propionamidine) dihydrochloride as the cationic initiator, and poly(vinyl pyrrolidone) as a stabilizer. The resulting cPS spheres were 280 nm in diameter, and showed monodispersion. After coating, the hollow silica product was spherically shaped, and 330 nm in diameter, with a narrow distribution of sizes. Dispersion was uniform. Wall thickness was 25 nm, and surface area was 96.4 $m^2/g$, as determined by BET. The uniformity of the wall thickness was strongly dependent upon the cPS surface charge. The effects of TEOS and ammonia concentrations on shape, size, wall thickness, and surface roughness of hollow $SiO_2$ spheres were investigated. We observed that the wall thicknesses of hollow $SiO_2$ spheres increased and that silica size was simultaneously enhanced with increases in TEOS concentrations. When ammonia concentrations were increased, the irregularity of rough surfaces and aggregation of spherical particles were more severe because higher concentrations of ammonia result in faster hydrolysis and condensation of TEOS. These changes caused the silica to grow faster, resulting in hollow $SiO_2$ spheres with irregular, rough surfaces.

공동주택 장수명화를 위해 MHS 공법이 적응된 골조공법 개선방안 (The Application of MHS Frames for Apartments of Extended Life in Korea)

  • 홍원기;김진민;김선국;김형근;윤기준
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.107-115
    • /
    • 2008
  • Bearing wall apartments have been introduced to meet the needs of population growth in metropolis since 1980 in Korea. It is extremely difficult to remodel bearing wall apartments. Noises and vibrations generated between floors are also problems to solve. This paper introduces rahmen structures that enable easy remodel. Modularized Hybrid System(MHS) is demonstrated to be effective in terms of material quantity, construction costs, and amount of $CO_2$ emission compared with those of bearing wall structures. Housings with MHS composite girder ensure the flexibility of architectural plan and easy remodel while the floor heights are maintained the same as bearing wall structures. The reduction of the concrete and reinforcing steels tonnage decreased construction cost of MHS multi-residential housings. The $CO_2$ omission was also diminished in accordance with the reduction of construction materials. This paper describes new structural system adapting MHS frames to propose the extended life of residential housings and reduce the national resources by preventing unnecessary rebuilding of housings.

미소구체를 이용한 3차원 Sn-C 복합체 제조 (Fabrication of 3-dimensional Sn-C Composites Using Microsphere)

  • 박보건;김석범;박용준
    • 한국전기전자재료학회논문지
    • /
    • 제23권9호
    • /
    • pp.741-746
    • /
    • 2010
  • Three-dimensionally ordered macro-porous Sn-C composites were prepared by using polystyrene microsphere as a template. The Sn-C composites were composed of well-interconnected pore with circular shape and wall structure with wall thickness of a few tens of nano-meters. This porous three-dimensional structure is readily and uniformly accessible to the electrolyte, which facilitates lithium ion diffusion during charge-discharge reactions. The wall thickness of the composites was increased as the increase of Sn content of the composite. From EDS analysis, it is confirmed that the Sn was dispersed uniformly in Sn-C composites. The capacity was increased as the Sn content increased, which is due to Sn anode with high capacity. The Sn-C composites with high Sn content showed superior cyclic performances. Such enhancement is ascribed to the thick wall thickness and small pore size of the sample with high Sn content. The Sn-C composite with Sn 30 wt% showed relatively high capacity and stable cycle life, however, the stability of the 3-dimensional structure should be enhanced by further work.

Structural Steel as Boundary Elements in Ductile Concrete Walls

  • Cho, Soon-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.73-84
    • /
    • 2000
  • A new form of construction utilizing structural steel as the boundary elements in ductile flexural concrete walls is proposed to solve the bar congestion problems in such a heavily reinforced region, while maintaining the ductility and energy absorption capacity comparable to their traditional form. Two wall specimens containing rectangular hollow structural sections (HSS) and channels at their ends respectively, and one companion standard reinforced concrete wall specimen with concentrated end reinforcement were constructed and tested under reversed cyclic loading to evaluate the construction process as well as the structural performance. Initially, all three specimens were chosen and detailed with some caution to have approximately the same flexural capacity without change of the original shape and dimension of a rectangular cross section correction. Analysis and comparison of test results indicated that the reversed cyclic responses of three walls showed similar hysteretic properties, but in those with steel boundaries, local buckling of the corresponding steel webs and flanges following significant yielding was a dominant factor to determine the hysteretic response. The monotonic and cyclic responses predicted based on a sectional approach was also presented and found to be in good agreement with measured results. Design recommendations considering local instability of the structural steel elements and the interaction between steel chords and a concrete web member in such a composite wall are presented.

  • PDF