• Title/Summary/Keyword: Composite use

Search Result 1,913, Processing Time 0.032 seconds

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan;Zhao, Ke;Xu, Kuo
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.763-774
    • /
    • 2019
  • The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

Composite Material made of Recycling Paper and Plastics (폐지를 활용한 재생 플라스틱)

  • 윤승원;이장용;김윤식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.697-702
    • /
    • 2002
  • Composite material made of recycling paper and plastics was developed. The tension and bending testing result of developed composite material shows that the cellulose contained in paper contributes much to get high flexural rigidity. As an application example, the raised access floor for office automation purpose was developed by making use of developed composite material. Manufacturing process together with the extrusion die and the compression die for to manufacture the access floor have been developed.

  • PDF

Seismic damage assessment of steel reinforced recycled concrete column-steel beam composite frame joints

  • Dong, Jing;Ma, Hui;Zhang, Nina;Liu, Yunhe;Mao, Zhaowei
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Low cyclic loading tests are conducted on the steel reinforced recycled concrete (SRRC) column-steel (S) beam composite frame joints. This research aims to evaluate the earthquake damage performance of composite frame joints by performing cyclic loading tests on eight specimens. The experimental failure process and failure modes, load-displacement hysteresis curves, characteristic loads and displacements, and ductility of the composite frame joints are presented and analyzed, which shows that the composite frame joints demonstrate good seismic performance. On the basis of this finding, seismic damage performance is examined by using the maximum displacement, energy absorbed in the hysteresis loops and Park-Ang model. However, the result of this analysis is inconsistent with the test failure process. Therefore, this paper proposes a modified Park-Ang seismic damage model that is based on maximum deformation and cumulative energy dissipation, and corrected by combination coefficient ${\alpha}$. Meanwhile, the effects of recycled coarse aggregate (RCA) replacement percentage and axial compression ratio on the seismic damage performance are analyzed comprehensively. Moreover, lateral displacement angle is used as the quantification index of the seismic performance level of joints. Considering the experimental study, the seismic performance level of composite frame joints is divided into five classes of normal use, temporary use, repair after use, life safety and collapse prevention. On this basis, the corresponding relationships among seismic damage degrees, seismic performance level and quantitative index are also established in this paper. The conclusions can provide a reference for the seismic performance design of composite frame joints.

Design of Composite Material Structures

  • Kim, Duk-Hyun-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.5-14
    • /
    • 1991
  • The basic rules and principles for designing structures with composite materials are briefly and intensively presented. The proposed design steps are explained. For preliminary design, use of quasi-isotropic properties is proposed. The validity of this proposal will be reported by separate papers.

  • PDF

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait;Madani, K.;Mokhtari, M.;Feaugas, X.;Touzain, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.679-699
    • /
    • 2017
  • The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.

Probabilistic Model of Service Life to Evaluate Damage Tolerance of Composite Structure (복합재 항공구조물의 손상허용평가를 위한 운항수명의 확률적 모델)

  • A.스튜어트;A.우샤코프;심재열;황인희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.245-248
    • /
    • 2000
  • Modern aircraft composite structures are designed using a damage tolerance philosophy. This design philosophy envisions sufficient strength and structural integrity of the aircraft to sustain major damage and to avoid catastrophic failure. The only reasonable way to treat on the same basis all the conditions and uncertainties participating in the design of damage tolerant composite aircraft structures is to use the probability-based approach. Therefore, the model has been developed to assess the probability of structural failure (POSF) and associated risk taking into account the random mechanical loads, random temperature-humidity conditions, conditions causing damages, as well as structural strength variations due to intrinsic strength scatter, manufacturing defects, operational damages, temperature-humidity conditions. The model enables engineers to establish the relationship between static/residual strength safety margins, production quality control requirements, in-service inspection resolution and criteria, and POSF. This make possible to estimate the cost associated with the mentioned factors and to use this cost as overall criterion. The methodology has been programmed into software.

  • PDF

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • Zarrintala, Hadi;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.297-313
    • /
    • 2022
  • Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.

Prediction of shear capacity of channel shear connectors using the ANFIS model

  • Toghroli, Ali;Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ibrahim, Zainah
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.623-639
    • /
    • 2014
  • Due to recent advancements in the area of Artificial Intelligence (AI) and computational intelligence, the application of these technologies in the construction industry and structural analysis has been made feasible. With the use of the Adaptive-Network-based Fuzzy Inference System (ANFIS) as a modelling tool, this study aims at predicting the shear strength of channel shear connectors in steel concrete composite beam. A total of 1200 experimental data was collected, with the input data being achieved based on the results of the push-out test and the output data being the corresponding shear strength which were recorded at all loading stages. The results derived from the use of ANFIS and the classical linear regressions (LR) were then compared. The outcome shows that the use of ANFIS produces highly accurate, precise and satisfactory results as opposed to the LR.

An Efficient Brownian Motion Simulation Method for the Conductivity of a Digitized Composite Medium

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.545-561
    • /
    • 2003
  • We use the first-passage-time formulation by Torquato, Kim and Cule [J. Appl. Phys., Vol. 85, pp. 1560∼1571 (1999) ], which makes use of the first-passage region in association with the diffusion tracer's Brownian movement, and develop a new efficient Brownian motion simulation method to compute the effective conductivity of digitized composite media. By using the new method, one can remarkably enhance the speed of the Brownian walkers sampling the medium and thus reduce the computation time. In the new method, we specifically choose the first-passage regions such that they coincide with two, four, or eight digitizing units according to the dimensionality of the composite medium and the local configurations around the Brownian walkers. We first obtain explicit solutions for the relevant first-passage-time equations in two-and three-dimensions. We then apply the new method to solve the illustrative benchmark problem of estimating the effective conductivities of the checkerboard-shaped composite media. for both periodic and random configurations. Simulation results show that the new method can reduce the computation time about by an order of magnitude.

A Study on the Cutting Characteristics of the Glass Fiber Reinforced Plastics by Drill Tools

  • Park, Jong-Nam;Cho, Gyu-Jae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • Composite materials are widely used to make all kinds of machine parts, internal and structural materials of cars, aerospace components, building structures, ship materials, sporting goods and others, It is worth while to use composite space substitute material in various applications when compared with others. But the use of composite material is limited in the field of the mechanical processing because of the difficulties in processing. Thus, it is proved that the surface is rough at the in and out sections of the hole processing when the GFRP is machined with HSS drill in the vertical machining center. And it is observed that the more it is processed, the more the fluid type long chip is changed into the powdered chip.