• Title/Summary/Keyword: Composite steel-concrete beams

Search Result 488, Processing Time 0.022 seconds

A Numerical and Experimental Study on Structural Performance of Noncomposite and Composite Eco-Arch Structures subjected to Concentrated Loads (집중하중을 받는 비합성.합성 생태아치구조물의 성능평가를 위한 수치해석 및 모형실험 연구)

  • Kim, Yong-Hee;Park, Jong-Sup;Lee, Young-Ho;Oh, Min-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In this study, noncomposite and composite eco-arch structures with I-beams and precast concrete(PC) decks were investigated. Four finite-element models(a steel-girder model, a steel-girder-and-several-PC-panels model, a three-steel-girder model, and a three-steel-girder-and-several-PC-panels model) using a general finite-element program, ABAQUS, were reviewed to predict the strength of the noncomposite and composite arch structures. Based on the results of the finite- element analysis, the behaviors of the four models were investigated, and deflection and strain gauges for the experimental specimen consisting of three steel girders and several PC panels were set up to obtain the ultimate strength. The ultimate strength of the specimen was estimated to be 1,961kN. The ultimate strength was much larger than the 1,380-kN load calculated using AASHTO LRFD Bridge Design Specifications(2007). The noncomposite and composite arch bridges were found to have enough strength for safety.

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

Experimental Evalution of Structural Behavior on SRC type TEC-BEAM to RC Column Connection (SRC형 TEC-BEAM과 RC기둥 접합부 구조적 거동의 실험적 평가)

  • Ju, Young Kyu;Kim, Do Hyun;Chung, Kwang Ryang;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.463-470
    • /
    • 2002
  • The TEC-Beam system is a composite beam consisting of structural tee, precast concrete, and cast-in-site reinforced concrete slab. The preliminary test of the proposed system was performed for simple beams, showing good behavior. However, for the field application of the system. TEC-Beam - RC column connection was required to produce a mechanism that transfers the force occurring in the lower part of the TEC-Beam. Thus, this study developed a connection mechanism that transfers the force occurring in the lower part of the TEC-Beam. Thus, this study developed a connection wherein the section of the TEC-Beam was enlarged and the lower part reinforced. Two setups of the proposed system were experimentally investigated. using the anchorage length of reinforcement., i.e., length of the increased section, as test parameter. It could be concluded from the result that the proposed system shows good structural behavior, with potential applicability in the field.

Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections (콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, the seismic details of a concrete-encased, U-shaped steel beam-to-RC column connection were developed. Three specimens of the beam-to-column connection were tested under cyclic loading to evaluate the seismic performance of the connection. The test parameters were the beam depth and the column section shape. The depths of the composite beams were 610 and 710 mm, including the slab depth. For the RC columns, a square section and a circular section were used. Special details using diagonal re-bars and exterior diaphragm plates were used to strengthen the connections with the rectangular and circular columns, respectively. The test results showed that the specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity exceeded 4% interstory drift angle, which is the requirement for the Special Moment Frame.

Flexural Experiments on Reinforced Concrete Beams Strengthened with SHCC and Special Reinforcements (SHCC와 특수 보강근으로 보강된 철근콘크리트 보의 휨 성능 실험)

  • Chang-Jin Hyun;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2023
  • In this paper, we evaluated the flexural performance of three types of reinforced concrete beams (SHCC-RB, SHCC-SB, SHCC-FRP) strengthened with ordinary steel rebar, very high strength (super strength) rebar, and FRP bars together with strain-hardening cement composite (SHCC). For this purpose, a series of beam specimens were manufactured and four-point load bending experiments were performed. As a result of the experiment, all specimens strengthened with SHCC exhibited tightly controlled flexural microcrakcs with the crack width of less than 100 ㎛. This is mostly due to the material properties of SHCC showing tensile strain hardening properties with multiple microcracks under uniaxial tension. The specimen SHCC-FRP showed lower initial cracking moment and yield flexural strength than SHCC-RB, whereas the maximum flexural strength of SHCC-FRP was superior to that of SHCC-RC. This is because the tensile strength of FRP bars is higher than that of ordinary steel reabr. The initial cracking moment of the beam specimen SHCC-SB was similar to that of SHCC-RB, but the yield flexural strength and maximum flexural strength of SHCC-SB were evaluated to be the highest.

Seismic Performance Assessment of a Modular System with Composite Section (합성단면을 적용한 모듈러 시스템의 내진 성능평가)

  • Choi, Young-Hoo;Lee, Ho-Chan;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • By producing pre-engineered modular system in the factory, It is enable to expedite construction and can be distinguished from two types by the method resisting load. One is the open-sided modular system composed of beams and columns. The other is enclosed modular system composed of panels and studs. Of the modular systems, the open-sided modular system buildings the connection between modules are difficult due to closed member sections, and the overall strength is reduced as a result of local buckling. In this study, in order to solve these problems, a modular system with folded steel members filled with concrete are proposed. The capacity spectrum method presented in ATC 40 is used for seismic performance assessment of the proposed model structure and the structure with conventional steel members. The analysis results show that at the performance point of each model the number and rotation of plastic hinge formed in the proposed modular system are smaller than those in the conventional system. Based on this observation it is concluded that the proposed system with composite sections has superior seismic capacity compared with conventional system.

A Simple Method of Obtaining Exact Values of the Natural Frequencies of Vibration for Some Composite Laminated Structures with Various Boundary Condition (다양한 경계조건을 갖는 복합적층판의 간편한 고유진동수 해석방법)

  • Won, Chi Moon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Many of the bridge systems, including the girders and cross-beams, and concrete decks behave as the special orthotropic plates. Such systems with boundary conditions other than Navier or Levy solution types, or with irregular cross sections, analytical solution is very difficult to obtain. Numerical method for eigenvalue problems are also very much involved in seeking such a solution. A method of calculating the natural frequency corresponding to the first mode of vibration of beam and tower structures with irregular cross-sections was developed and reported by Kim in 1974. Recently, this method was extended to two dimensional problems including composite laminates, and has been applied to composite plates with shear deformation effects. In this paper, application of this method to the specially orthotropic laminated plates with various boundary condition is accomplished and the result of analysis is presented.

An Experimental of RC Beams Strengthened with Pultruded Glass Fiber and Steel strip (통기성 유리섬유-강판 인발성형 스트립으로 보강된 RC보의 실험적 거동분석)

  • Kim, Woonhak;Kang, Seokwon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Recently, FRB is being used more as reinforcement of RC beam thanks to its material advantages in construction industry. The external attachment reinforcement of FRP is a construction method with advantages such as high strength, stiffness, excellent durability and construction practicability, despite of its weight. However, the reinforcement has a disadvantage to cause damage on permanent structure as its structure is water-tight by low water permeability reinforcement, preventing water from draining outside. The study attempted flexural failure test for GP of which material properties are equally same as the existing FRP and that with permeability, shows good binding with the concrete structure, durable performance and durability, comparably analyzing the improvement of durability and ductility according to changes of fiber contents of composite strip.

A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking

  • Battista, Ronaldo C.;Varela, Wendell D.
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.467-478
    • /
    • 2019
  • Composite floor structures formed by continuous slab panels may be susceptible to excessive vibrations, even when properly designed in terms of ultimate limit state criteria. This is due to the inherent vibration characteristics of continuous floor slabs composed by precast orthotropic reinforced concrete panels supported by steel beams. These floor structures display close spaced multimode vibration frequencies and this dynamic characteristic results in a non-trivial vibration problem. Structural stiffening and/or insertion of struts between floors are the usual tentative solution applied to existing vibrating floor structures. Such structural alterations are in general expensive and unsuitable. In this paper, this vibration problem is analyzed on the basis of results obtained from experimental measurements in typical composite floors and their theoretical counterpart obtained with computational modeling simulations. A passive control system composed by multiple synchronized dynamic attenuators (MSDA) was designed and installed in these floor structures and its efficiency was evaluated both experimentally and through numerical simulations. The results obtained from experimental tests of the continuous slab panels under human walking dynamic action proved the effectiveness of this control system in reducing vibrations amplitudes.