• Title/Summary/Keyword: Composite steel bridge

Search Result 474, Processing Time 0.022 seconds

Temporary Stresses by Applying Construction Methods for Continuous Steel-Concrete Double Composite Box Girder Bridges (이중합성 연속 박스거더교에 대한 가설공법별 발생 단면력 검토)

  • Choi, Hang Yong;Suh, Suk Koo;Oh, Myung Seok;Oh, Sae Hwan;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.681-693
    • /
    • 2007
  • Construction techniques for continuous steel bridges were applied to steel-concrete double composite box girder bridges. Concrete depth and length at the bottom of the steel box in the negative moment region were determined by plastic moment region and negative moment region of the double composite section, respectively. Construction methods, such as crane lifting method, free cantilever method, and incremental launching method were used for the analysis of the construction stage. Two cases of the construction phase were considered and analyzed for the stress resultant of double composite girders. The behavior of the nose-deck elastic system was examined by three-dimensionless parameters, such as the nose length, the unit weight of the launching nose, and the flexural stiffness of the nose. The adoption of the launching nose has become an effective solution in the incremental launching of steel-concrete double composite box girder bridges.

Experimental Verification of Age-adjusted Effective Modulus Method to Long-Term Behavior Estimation of Prestressed Composite Girders (재령보정 유효계수방법에 의한 프리스트레스트 합성거더의 장기거동 실험 검증)

  • Bae, Doo-Byong;Oh, Chang-Kook;Choi, Sok-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.571-582
    • /
    • 2012
  • Prestressed composite girders provide efficient composite action by applying prestress to the sub-encasing concrete. In this study, an enhanced prestressed composite girder with forms suspended from the steel girder is utilized. Long-term behavior of the prestressed composite girder is estimated using age-adjusted effective modulus method, which is verified experimentally using measurements obtained from an in-service bridge. Then, parametric study is carried out to investigate the influences caused by ambient temperature, humidity, prestressing and concrete casting date.

The Development of Improved Construction and Design Method on Continuous Preflex Girder Bridge (연속 프리플렉스 거더교의 개선된 시공법과 설계식의 개발)

  • Koo, Min Se;Park, Young Je;Kim, Hun Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.183-194
    • /
    • 2005
  • In the previous construction method of continuous preflex composite girder bridge, we raised the inner support, and cast slab concrete innegative moment section, then lowered it to introduce compressive force in the slab. There were a few problems in the process such as the time required in raising the support and the bending of the camber. Therefore, this paper represents an improved construction method of continuous preflex composite girder by only moving downward the inner and outer supports to figure out problems in previous construction method. This paper proposes a design formula to find a proper cross section of preflex girder.

Research on shear distribution of perfobond connector groups with rubber rings

  • Liu, Yangqing;Xin, Haohui;Liu, Yuqing
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.399-414
    • /
    • 2021
  • This paper aims to verify the feasibility of rubber rings to mitigate the shear concentration in perfobond connector (PBL) groups. Firstly, modified push-out tests for five specimens with four holes were conducted to investigate the effects of rubber rings on the shear mechanism of PBL groups. The test results showed that by employing rubber rings on partial holes, more shear forces were distributed to the holes without rubber rings. The rubber rings significantly improved the slip ability of the specimens, and the ductility of PBL groups is dependent on the number and thickness of rubber rings. Subsequently, three-dimensional numerical models were established and validated by the experimental results. According to the plastic strain distribution in concrete dowels, the action principle of rubber rings in PBL groups was explained. Furthermore, the parametric study was conducted to investigate the influential factors on shear distributions, including the width of steel plates, the hole spacing, the number of holes, the rubber ring thickness, and the positions of rubber rings. The parametric analysis results showed that the redistribution of shear forces is significantly affected by the rubber rings with the smallest thickness. By properly employing rubber rings in PBL groups, the shear forces of holes are more even. Finally, an analytical model for PBL groups with rubber rings was proposed to predict the shear distribution at the serviceability stage.

A Comparison of Design Strength Equations between Steel and Fiber Reinforced Polymer Composites Columns (철골 및 섬유보강 폴리머(FRP) 복합 기둥의 설계강도식에 관한 비교 연구)

  • Choi, Yeol;Pyeon, Hae-Wan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.85-93
    • /
    • 2003
  • Steel, concrete and their combination materials are the most 6commonly used materials for civil engineering structural systems such as buildings, bridge structures and other structures. Recently, however, fiber reinforced polymer (FRP) composites, a relatively new composite material made of fibers and polymer resins, have been gradually used in structural systems as an alternative structural material. This paper describes a comparison of design strength equations for steel column and FRP composite column based on design philosophies. The safety factors used in allowable stress design (ASD) are relatively higher in FRP structural design than steel structural design. Column critical stress equations of FRP composites column from an experimental study can be represented by Euler elastic buckling equation at the long-range of slenderness, and an exponential form at the short-range of slenderness as defined in Load and Resistance Factor Design (LRFD) of steel column. The column strength of steel and FRP composite columns in large slenderness is independent of material strength, this result verified the elastic buckling equation as derived by Eq. (15) and Eq. (5).

  • PDF

A Study on Design Section of Composite Steel H-Beam Bridge Based on KRTA Design Specifications (도로교 설계기준을 적용한 초간편 H-형강 강합성 교량 설계단면 연구)

  • Park, Jong-Sup;Kim, Jae-Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1711-1717
    • /
    • 2008
  • This paper presents an investigation on behavior of a simplified composite I-beam bridge(SCIB) based on Korea Bridge Design Specifications(2005). Simple and continuous span SCIBs are considered to determine the design cross section. A structural analysis program, MIDAS(2006), is used to obtain the stress and deflection of the SCIB. In order to evaluate the safety of the design cross section, three-dimensional analysis is performed using ABAQUS(2007). According to the verification results from stresses and deflections of the design section, the new composite bridge are safely used for developments of reasonable and economic SCIB.

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.

Determination of the Initial Tendon Force using Rating Factor Equation in Composite Girders Strengthened with External Tendons (외부 긴장재로 보강된 강합성보의 내하율 산정식을 이용한 초기 긴장력 결정)

  • Choi, Dong Ho;Chung, Sang Hwan;Yoo, Dong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.527-536
    • /
    • 2005
  • A method of reinforcement using external tendons has been found to be one of the effective techniques of reinforcement and its application is increasing. In this paper, the method to calculate the initial tendon force is proposed for the improvement of load-carrying capacity in existing steel-concrete composite bridges. An equation for the increment of tendon force was derived for tendon configurations and live load types, and the effect of reinforcement in a composite beam was numerically studied. The method to calculate the number of tendon and initial tendon force was presented by proposing the new method to calculate the rating factor, which considers the increment of tendon force. The method was shown to be effective for an existing steel-concrete bridge.

Structural Responses of Composite-girder Bridges Due to Design Live Loads using Distribution Factor Method and Grillage Analysis (횡분배계수법과 평면격자 해석법을 이용한 합성거더교의 설계활하중 응답연구)

  • Jung, Myung-Rag;Yang, Hee-Sun;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In this paper, the modified live-load and designed formula are studied according to the fact the highway bridge design specifications are recently revised. The two examples for composite steel plates and PSC girder bridges are studied. The envelope is analyzed with the finite element models and lateral load distribution method applying the existing highway bridge specification(2010), the newly revised highway bridge specification(2015) and AASHTO LRFD. In case of composite steel plates, length changes between spans are studied, and in case of PSC girder. changes of the number of cross-beams and spans, and span-lengths, are analyzed.

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.