• Title/Summary/Keyword: Composite sandwich

Search Result 579, Processing Time 0.029 seconds

Blasting resistance of curved sandwich composite concrete bunkers

  • Mahmudul Hasan;Ahmad B.H. Kueh
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.63-73
    • /
    • 2024
  • Improving the blast resistance of structural establishments has become an imperative engineering commitment to prevent property damage and fatalities in terrorist incidents. This study investigates the effects of blast mass and stand-off distance on CFRP skin concrete core sandwich bunkers of varying thicknesses using ABAQUS/Explicit software with CONWEP functionality. The considered parameters include TNT masses of 1, 10, and 25 kg and stand-off distances of 0.1, 1, 2, and 2.5 meters on structures with 200, 250, and 500 mm core thicknesses. The study finds that there exists a declining response corresponding to the blasting mass reduction coupled with increases in the stand-off distance and core thickness. The 500 mm thick bunker sustains less damage compared to those with 200 mm and 250 mm core thicknesses. The sandwich configuration remains structurally advantageous vs. those without skins. The sandwich bunker with a 500 mm thick concrete core gives the best performance against the 10 kg TNT blast load with a 1 m standoff distance exhibiting a 22.8% reduction in damage vs. that without skins. Mathematical expressions are then formulated for predicting maximum von Mises stress, principal stress, and displacement of sandwich bunkers as functions of TNT masses, stand-off distances, and core thicknesses.

Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet (적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별)

  • Oh, Se-Hee;Han, Jae-Hung;Oh, Il-Kwon;Shin, Won-Ho;Kim, Chun-Gon;Lee, In;Park, Jong-Heung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.228-233
    • /
    • 2001
  • Satellite system experiences severe mechanical loads during the launch period. Therefore, positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading condition during the launch period. This paper presents modal and stress analysis result due to quasi-static loads for the satellite antenna system. The failure tendency for the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

Dynamic Characteristic of Composite Beam using the Sandwich Plate System (샌드위치 플레이트 시스템을 이용한 합성보의 동적 특성)

  • Ryu, Jae-Ho;Ju, Young-Kyu;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.65-72
    • /
    • 2014
  • To improve the noise and vibration problems of the existing public parking systems, new floor system was proposed. This system consists of the Sandwich Plate System(SPS), steel beam and post-tensioned steel tendons. To verify the dynamic characteristics such as the natural frequency and damping ratio of the system, the free vibration test was performed. Test results showed that the natural frequency of the SPS composite beam was 23.8Hz and it was increased by 3.8% by installing the post-tensioned tendons. The damping ratio of the specimen with tendons was about 1.64%.

Effect of Diaphragm Ratio by Load Condition and Behavior in Composite Structures of Sandwich System (샌드위치식 복합구조체에서 하중조건.거동특성에 따른 격벽간격비의 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.297-302
    • /
    • 2000
  • This paper presents the effect of diaphragm spacing ratio(depth to span) on behavior and capacity of composite steel-concrete structures of sandwich system. Numerical analysis has been performed variety diaphragm ratio, behavior and load condition. As a results of this study, in case of shear behavior and concentrated load, the capacity of structure such as yielding and ultimate load improve according to diaphragm ratio because of concrete confining effect by steel plate and stress redistribution by diaphragm. But in case of bending behavior or uniform load, it proved that diaphragm ratio don't influence on behavior and capacity of composite structures of sandwich system.

  • PDF

Electromagnetic Characteristics of Carbon Black filled Class-Fabric Composite Sandwich Structure (카본블랙이 첨가된 유리직물 복합재 샌드위치 구조의 전자기적 특성)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kang, Lae-Hyong;Han, Jae-Hung;Kim, Chun-Gong;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.234-237
    • /
    • 2003
  • The absorption and the interference shielding of the electromagnetic wave problem have been a very important issue for commercial and military purposes. This study dealt with the simulation reflection loss for electromagnetic absorbing sandwich type structures in X-band(8.2Ghz~12.4GHz). Glass/epoxy composites containing conductive carbon blacks were used for the face sheets and styrofoams were used for the core. Their permittivities in X-band were measured using the transmission line technique. Simulation results of 3-1ayered sandwich type structures showed the reflection loss using the theory about transmission and reflection in a multi-layered medium.

  • PDF

A Study on 4 Point Bending Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 4점 굽힘 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Lim, Seongjin
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • In this study, it was performed damage assesment of small scale composite aircraft developing. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with Nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole was compared with the results of no damaged specimen test. The FEM analysis is assessed via an experimental 4-point bending test.

  • PDF

A Study on the manufacturing process for Hybrid Composite Carbody Structures (하이브리드 복합재 차체 구조물의 성형공정에 관한 연구)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.461-466
    • /
    • 2004
  • The hybrid composite carbody structures were considered as the carbody system of Korean Tilting Train eXpress(TTX) to achieve the lightweight design. The TTX carbodies are composed of the carbody shell made of the sandwich composite structure and the undeframe made of the metal structure. The sandwich structures were used to minimize the weight of carbody, and the metal underframe was used to modify the design easily and to keep the strength of underframe by the installation of the electrical equipments. The sandwich carbody structures will be cured in an autoclave. In this paper, the manufacturing processes of the TTX carbody structures were introduced briefly.

  • PDF

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.107-128
    • /
    • 2018
  • Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture and are considered to be temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform method (DTM). Comparison between the results of the present work and those available in literature shows the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects.

Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.327-335
    • /
    • 2017
  • To gain more knowledge of aluminum foam sandwich structure and promote the engineering application, aluminum foam sandwich consisting of 7050 matrix aluminum foam core and 304 stainless steel face-sheets was studied under three-point bending by WDW-T100 electronic universal tensile testing machine in this work. Results showed that when aluminum foam core was reinforced by 304 steel face-sheets, its load carrying capacity improved dramatically. The maximum load of AFS in three-point bending increased with the foam core density or face-sheet thickness monotonically. And also when foam core was reinforced by 304 steel panels, the energy absorption ability of foam came into play effectively. There was a clear plastic platform in the load-displacement curve of AFS in three-point bending. No crack of 304 steel happened in the present tests. Two collapse modes appeared, mode A comprised plastic hinge formation at the mid-span of the sandwich beam, with shear yielding of the core. Mode B consisted of plastic hinge formation both at mid-span and at the outer supports.