• Title/Summary/Keyword: Composite resins

Search Result 447, Processing Time 0.026 seconds

AN EXPERIMENTAL STUDY ON PHYSICAL PROPERTIES OF VARIOUS POSTERIOR RESTORATIVE COMPOSITE RESINS (수종(數種) 구치부(臼齒部) 충전용(充塡用) 복합(複合)레진의 물리적(物理的) 성질(性質)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Sun-Jae;Park, Sang-Jin;Min, Byang-Soon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.1
    • /
    • pp.7-24
    • /
    • 1986
  • The purpose of this study was to observe the compressive strength, compressive fatigue strength, surface hardness, water sorption and solubility of eight different posterior restorative composite resins. Eight composite resins were tested for their strength of the compressive and compressive fatigue with prepared two different types of specimens (I and T-type) using a Instron universal testing machine (model No. 1332). The hardness was measured with a Knoop hardness tester (MVH-2, Tokyo) for each cylindrical specimen, 7mm in diameter and 5mm thick. The water sorption and solubility were evaluated with the prepared composite resin disks, 20mm in diameter and 1mm thick. The results were as follows: 1. The compressive strength, compressive fatigue strength and hardness were noticed to be Increased by increasing the volume content of filler. 2. The compressive strength was appeared to be independent on the type of specimen, but the compressive fatigue strength was found to be greatly influenced by the type of specimens. 3. The composite resins having higher compressive strength had also higher compressive fatigue limits. 4. The compressive fatigue limits at $10^5$ stress cycles were about 50-80% of the compressive strength and were showen to be dependent on the materials and type of specimens. 5. The larger the filler particle size was, the lower was the water sorption. And the water sorption of BIS-GMA resin was higher than that of urethane resin. 6. The visible light-cured composite resin had a higher value of solubility than the chemically- cured composite resin. And the solubility tended to decrease by increasing the volume content of filler.

  • PDF

Wear Behaviours of Dental Composite Resins Containing Prepolymerized Particle Fillers (1st Report) (有機複合필러를 包含하는 齒科用 콤포짓트 레진의 磨耗擧動(제1보))

  • 임정일;김교한;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.124-130
    • /
    • 1998
  • The wear characteristics and wear mechanisms of dental composite resins were investigated. Composite resins such as Metalii, Silux Plus, Heliomolar and Palfique Estelite were selected as specimens and contents of filler in specimens in order to analyze the effect of Prepolymerized Particle Fillers in friction and wear characteristics. Ball on flat wear tester was used for a wear test. Friction and wear tests are carried out at room temperature. The friction coefficient of Metafil was quite high relatively, and the wear resistance of Silux Plus and Palfique Estelite was better than that of Metafil and Hellomolar at the same experimental condition. The main wear mechanism is plastic flow and abrasive wear by crack propagation.

  • PDF

The polymerization rate and the degree of conversion of composite resins by different light sources

  • Ryoo, Joo-Hee;Kwon, Hyuk-Choon
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.565-566
    • /
    • 2003
  • The clinical performance of light polymerized composite resins is greatly influenced by the quality of the light curing unit used. Commonly used halogen light curing units(LCUs) have some specific drawbacks such as decreasing light output with time. To overcome this, the blue LED LCUs are newly developed and introduced. The purpose of this study was to observe the reaction kinetics and the degree of polymerization of composite resins when cured by different light sources and to evaluate the effectiveness of the blue LED LCUs compared with conventional halogen LCUs.(omitted)

  • PDF

A study of polymerization shrinkage of composite resins cured by various light intensities

  • Lim, Mi-Young;Hong, Chan-Ui
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.613-613
    • /
    • 2003
  • The purpose of this study was to compare the effect of exponential curing method with conventional curing and two step soft start curing method on polymerization shrinkage of composite resins. Three brands of composite resins (Synergy Duo Shade, Z-250, Supreme) and three brands of light curing units (Spectrum 800, Elipar Highlight, Elipar Trillight) were used. In this study, the diameter of specimen was 5.5mm and height 1.6mm and the specimen was cured for 40 seconds. The shrinkage was measured by custom made linometer. The amount of linear polymerization shrinkage recorded in the computer every 0.5 second for 90 seconds. Each group was measured 10 times.(omitted)

  • PDF

The properties of UDMA dental composite resin with novel photosensitizers (새로운 광증감제 사용에 따른 UDMA 복합수지의 특성)

  • Sun, Gum Ju
    • Journal of Technologic Dentistry
    • /
    • v.35 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • Purpose: The purpose of this study was to know the availability of two photosensitizers, PD, DA, as a photosensitizer instead of CQ in UDMA dental composite resin. We want to know photopolymerization effect of UDMA unfilled resin and surface hardness of composite resin containing PD and DA were compared with those of CQ, most widely used photosensitizer for dental composite resins. Methods: The photopolymerization effect of UDMA studied by FT-IR spectroscopy increased with irradiation time and the amount of photosensitizer. Knoop hardness of experimental composite resins prepared by the addition of the photosensitizer content and irradiation time. Results: The relative photopolymerization effect of UDMA increased in the order of PD > CQ > DA. The composite resin of UDMA containing DA or PD, which shows better Knoop hardness than that containing CQ. Conclusion: PD and DA show as effective photosensizers, suitable for UDMA dental composite resin compare with a higher efficiency than CQ.

Wear Of Dental Restorative Composite Resins Cured by Two Different Light Sources (치아 충전용 복합레진의 광중합 광원 종류에 따른 마멸 비교)

  • Kim H.;Lee K.Y.;Park S. H.;Jung I. Y.;Jeon S. B.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.350-354
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion of sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji ?LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

  • PDF

The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

  • Kamble, Vaibhav Deorao;Parkhedkar, Rambhau D.;Mowade, Tushar Krishnarao
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • PURPOSE. The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS. Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS. For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION. Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications. On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins.

Wear Of Resin Composites Polymerized By Conventional Halogen Light Curing And Light Emitting Diodes Curing Units (HALOGEN LIGHT CURING UNIT 과 LIGHT EMITTING DIODES CURING UNIT 을 이용하여 중합되어진 복합레진의 마모 특성 비교)

  • 이권용;김환;박성호;정일영;전승범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1057-1060
    • /
    • 2004
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15 N contact force in a reciprocal sliding motion with sliding distance of 10 mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed the least wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as a curing unit for composite resin restorations.

  • PDF

A STUDY ON THE HARDNESS IN VISIBLE LIGHT COMPOSITE RESIN (광중합(光重合) 레진의 경도측정(硬度測定)에 관(關)한 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1989
  • The purpose of this study was to measure Micro vicker's hardness of 4 kinds of anterior Composite resins (Pyrofil light bond anterior, Lite-fil anterior, Photo clear fil anterior, Silux) and 6 kinds of posterior Composite resin (Pyrofil light bond posterior. Lite-fil posterior, Photo clear fil posterior, Occlusin posterior, Palfique light posterior, P-30, posterior) according to deference of depth and distance of light tip from surface of composite resin. Each composite resin was filled into Teflon tube of 5mm in diameter and 5mm in depth, celluloid matrix was covered and the light in accordance with each composite resin was irradiated in distance of zero millimeter and 1 cm from light tip to surface of composite resin for 30 seconds. Specimens were sectioned longitudinally with cutting device. Microvicker's hardness measurements ware made at the depth of surface, 1mm, 2mm, 3mm, 4mm and 5mm from the surface to deep portion. Vicker's hardness numbers were taken on each depth under 200gm load for 30 seconds with MVK-E. The following results were: 1. The highest hardness value was measured at 1 mm depth. Then the deeper the depth, the lesser the hardness was observed. 2. The hardness value of anterior composite resins is lower than one of posterior composite resins. 3. Hardness number of composite resin irradiated in distance of zero millimeter from surface of composite resin was higher than one of 1 cm from surface of composite resin. 4. The pattern of hardness change at varying depth was similar to all the experimental material with no relation to distance of light from specimen.

  • PDF

A STUDY ON THE POLYMERIZATION STRESS OF COMPOSITE RESINS (복합레진의 중합수축력에 관한 연구)

  • Kim, Boo-Rang;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.331-341
    • /
    • 1992
  • The purpose of this study was to measure the polymerization contraction stress of two types of composite resins; chemical cured type(Cliarfil F II, Kuraray, Japan) and photo-cured type(Photo-Clearfil Bright, Kuraray, Japan). The stresses of composite resin by contraction measured with specially designed measuring device(Fig. 1). The stresses caused by shrinkage during hardening of specimens were measured according to the type of composite resins, thickness of specimen(0.65, 1.30 and 1.95mm), and ratio of catalyst to base in case of only chemical cured composite resin(0.5, 1.0 and 1.5). As the composite resin specimen shrank on hardening, the load cell recorded force vs time automatically on pen-recorder(Toa, Japan) with a cross-head speed 60mm/hr at 0~10 voltages up to 2 hours. The experiments were conducted in a room maintained at $23{\pm}2^{\circ}C$ and relative humidity $50{\pm}10%$. The results were as follows. 1. The contraction stress during hardening was higher in photo cured composite resin than in chemical cured composite resin. 2. The contraction stress during hardening was increased with thickness of composite resin specimen. 3. In chemical cured composite resin, the polymerization contraction stress was decreased with ratio of catalyst and base. 4. The contraction stress during polymerization was higher in early time after insertion of photo cured composite resin and chemical cured composite resin.

  • PDF