• Title/Summary/Keyword: Composite resin cement

Search Result 199, Processing Time 0.018 seconds

A STUDY OF THE SHEAR BOND STRENGTH OF COMPOSITE RESIN TO LIGHT-CURING GLASS IONOMER CEMENTS (광중합형 글라스아이오노머 시멘트와 복합레진과의 전단결합강도에 관한 연구)

  • Kim, Deok;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.447-459
    • /
    • 1994
  • The purpose of this study is to evaluate of shear bond strength of light-curing composite resin to light-curing glass ionomer cement. Composite resin and glass ionomer cement have been widely used as an esthetic filling materials in dental clinics. To achieve better clinical results, sandwich technic was developed with conpensating for disadvantages of these two materials. Especially, light-curing glass ionomer cement provided greately improved bonding strength of teeth or composite resin, and then excellent clinical results can be acquired. In this study, 6 commercial light-curing glass ionomer cements(3 commercial restorative materials : Fuji II LC, Variglass VLC, Vitremer, and 3 commercial lining materials : Fuji Lining LC, Baseline VLC, Vitrebond) were devided two groups. According to manufacturer's appointment, no surface treatment was referred to N groups. Supposing. of clinical practice, surface grinding with water spray at 320 grit sand paper, 40 seconds etching with 37% phosphoric acid, 20 seconds washing, 20 seconds air drying was referred to N groups. Totally 12 experimental groups were devided, and all 120 specimens from 10 specimens of each groups were made. After light-curing composite resin was bonded to light-curing glass ionomer cement, shear bond strength was tested by Instron universal testing machine between glass ionomer cement and composit resin. The data were analyzed statistically by Student's t-test and ANOVA. The obtained results were as follows; 1. In light-curing glass ionomer cement, restorative materials showed higher shear bond strength to composite resin than lining materials(p<0.05). 2. Variglass VLC of restorative material group and Baseline VLC of lining material group have highest shear bond strength to composite resin(p<0.001). 3. In light-curing glass ionomer cement, surface grinding and acid etching reduced shear bond strength to composite resin(p<0.001)}. 4. VGN group 1s highest shear bond strength to composite resin, VBE group is lowest shear bond strength to composite resin(p<0.001).

  • PDF

A STUDY ON THE RETENTIVE CAPABILITY OF CAST POST CEMENTED WITH SOME DENTAL CEMENTS (수종 치과용 시메트에 의한 주조 포오스트의 유지력에 관한 연구)

  • Lee, Chang-Ho;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 1988
  • An in vitro study was performed to compare the retentive value of cast post cemented with three commonly used cements and one composite resin. Twenty cast posts were made from twenty extracted lower premolars. The samples were randomly divided into four groups. The first group was cemented with zinc phosphate cement, the second group with polycarboxylate cement, the third group with glass-ionomer cement, and the fourth group with composite resin. The tensile load test was performed on an Instron testing machine with crosshead speed of 2 mm/min and the results were compared statistically. The results were as follows ; 1. The mean value of tensile break force of cemented cast post was 23.36Kg in case of zinc phosphate cement, 16.28Kg in case of polycarboxylate cement, 22.09Kg in case of glass-ionomer cement , and 26.88Kg in case of composite resin. 2. Retention was not significantly different among zinc phosphate cement, glass-ionomer cement and composite resin. 3. Polycarboxylate cement was found to be less retentive than zinc phosphate cement, glass-ionomer cement , and composite resin.

  • PDF

THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS (복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도)

  • Han, Jae-Ik;Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

Cementation technique in indirect tooth colored restoration

  • Park, Sung-Ho
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.595-595
    • /
    • 2001
  • As the interest for esthetic restoration is increasing, the usage of composite resin is increasing. The usage of composite resin is not limited to anterior teeth but is spreading to posterior area using direct & indirect methods. Generally, dual or chemical cure resin cement has been used for setting composite or porcelain inlay restoration. However, chemical cure resin cement has limited working time and it's difficult to remove excess cement from the tooth and the restoration. The dual cured composite is also difficult to remove from the tooth surface.(omitted)

  • PDF

Retentive strength of different intracanal posts in restorations of anterior primary teeth: an in vitro study

  • Memarpour, Mahtab;Shafiei, Fereshteh;Abbaszadeh, Maryam
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.4
    • /
    • pp.215-221
    • /
    • 2013
  • Objectives: To determine the retentive strength and failure mode of undercut composite post, glass fiber post and polyethylene fiber post luted with flowable composite resin and resin-cement. Materials and Methods: Coronal parts of 120 primary canine teeth were sectioned and specimens were treated endodontically. The teeth were randomly divided into 6 groups (n = 20). Prepared root canals received intracanal retainers with a short composite post, undercut composite post, glass fiber post luted with flowable resin or resin-cement, and polyethylene fiber post luted with flowable resin or resin-cement. After crown reconstruction, samples were tested for retentive strength and failure mode. Statistical analysis was done with one-way ANOVA and Tukey tests (p < 0.05). Results: There were statistically significant differences between groups (p = 0.001). Mean bond strength in the undercut group was significantly greater than in the short composite post (p = 0.030), and the glass fiber post (p = 0.001) and the polyethylene fiber post group luted with resin-cement (p = 0.008). However, the differences between the undercut group and the groups with flowable composite as the luting agent were not significant (p = 0.068, p = 0.557). Adhesive failure was more frequent in the fiber post groups. Conclusions: Although the composite post with undercutting showed the greatest resistance to dislodgement, fiber posts cemented with flowable composite resin provided acceptable results in terms of retentive strength and fracture mode.

THE MARGINAL SEALING EFFECT OF COMPOSITE RESIN INLAYS ACCORDING TO THE LUTING TECHNIQUES (합착방법(合着方法)에 따른 복합(複合)레진 인레이의 변연폐쇄효과(邊緣閉鎖效果))

  • Moon, Young-Deok;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.121-132
    • /
    • 1991
  • The purpose of the study was to evaluate the marginal sealing effect of composite resin inlays according to the luting techniques and compare them to the conventional direct resin filling technique. 90 cavities of class V were prepared on the buccal surface of 90 extracted molar teeth, which were divided into four groups. Cavities of control group were directly filled with Scotchbond 2 and P - 50, and those of composite resin inlay groups were luted with one of the followings: Adhesive bond followed by Adhesive cement, All bond followed by Adhesive cement, Fuji - ionomer type L All the specimens were immersed in India ink dye solution for 7 days at $37^{\circ}C$ incubator after thermocycling between $5^{\circ}C$ and $60^{\circ}C$ and longitudinally sectioned with diamond disk inot two parts All the specimens were observed at the occlusal and gingival margins and statistical analysis was performed. The results were as follows: 1. Groups filled with composite resin inlay showed less marginal leakage than the group directly filled(p<0.01). 2. There was no significant difference in marginal leakage between composite resin inlay groups luted with Adhesive bond followed by Adhesive cement and the group luted with All bond followed by Adhesive cement(p>0.05). 3. At occlusal margins, Composite resin inlay group luted with Adhesive bond followed by Adhesive cement showed less marginal leakage than the group luted with Fuii ionomer type I(p<0.01). At gingival margins, composite resin inlay group luted with All bond followed by Adhesive cement showed less marignal leakage than the group luted with Fuji ionomer type I(P<0.01).

  • PDF

The Study of Water Stability of MDF Cement Composite by Addition of Epoxy Resin and Manufacturing Process (Epoxy Resin 첨가 및 제조공정에 따른 MDF 시멘트 복합재료의 수분안정성 연구)

  • 노준석;김태진;박춘근;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.371-377
    • /
    • 1998
  • The effect of epoxy resin on the water stability of HAC/PVA based MDF cement composite were stu-died through the three different forming methods calendering extruding and warm pressing. In prexing step the epoxy resin was added in 5-15wt% of cement weight. The 3-point flexural strength of each dry and wet specimen which were immersed in water during 3. 7, 14 days was estmated and the mi-crostructural change of epoxy resin-added MDF cement composite due to water immersion was charac-terized by scanning electron microscopy. As the addition amount of epoxy resin the im-provement of water stability of MDF cement composite was achieved in most case. Especially through the warm press forming method the effectiveness of epoxy resin addition to the water stability was enhanced. When the epoxy resin was added by 5wt% to 7wt% the optimum flexural strength and water stability

  • PDF

FINITE ELEMENT ANALYSIS OF STRESS AND TEMPERATURE DISTRIBUTION AFFECTED BY VARIOUS RESTORATIVE AND BASE MATERIAL (수복재와 이장재에 따른 응력과 온도 분포의 유한 요소 분석)

  • Lee, Jae-young;Oh, Tae-Suk;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.321-337
    • /
    • 2000
  • Dental caries, one of the most frequent dental disease, become larger because it can be thought as a simple disease. Further more, it can progress to unexpected root canal therapy with fabrication of crown that needs reduction of tooth structure. Base is required in a large caries and ZOE, ZPC, glass ionomer are used frequently as base material. They, with restorative material, can affect the longevity of the restoration. In this study, we assume that the mandibular 1st molar has deep class I cavity. So, installing the 3 base material, 3 kinds of fillings were restored over the base as follows; 1) amalgam only, 2) amalgam with ZPC, 3) amalgam with ZOE, 4) amalgam with GI cement, 5) gold inlay with ZPC, 6) gold inlay with GI cement, 7) composite resin only, 8) composite resin with GI cement. After develop the 3-dimensional model for finite element analysis, we observe the distribution of stress and temperature with force of 500N to apical direction at 3 point on occlusal surface and temperature of 55 degree, 15 degree on entire surface. The analyzed results were as follow : 1. Principal stress produced at the interface of base, dentin, cavity wall was smallest in case of using GI cement as base material under the amalgam. 2. Principal stress produced at the interface of base, dentin, cavity wall was smaller in case of using GI cement as a base material than ZPC under gold inlay. 3. Composite resin-filled tooth showed stress distributed over entire tooth structure. In other words, there was little concentration of stress. 4. ZOE was the most effective base material against hot stimuli under the amalgam and GI cement was the next. In case of gold inlay, GI cement was more effective than ZPC. 5. Composite resin has the small coefficient of thermal conductivity. So, composite resin filling is the most effective insulating material.

  • PDF

Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

  • dos Santos, Victor Hugo;Griza, Sandro;de Moraes, Rafael Ratto;Faria-e-Silva, Andre Luis
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.12-16
    • /
    • 2014
  • Objectives: Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Material and Methods: Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice ($1mm^2$ diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results: Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions: Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

AN EXPERIMENTAL STUDY ON THE SHEAR BOND STRENGTH OF THE COMPOSITE RESIN WITH THE VARIOUS SURFACE TREATMENTS OF LIGHT - CURED GLASS IONOMER CEMENTS (광중합형 Glass Ionomer Cement의 표면처리 방법에 따른 복합레진과의 결합력에 관한 실험적 연구)

  • Yong, Seung-Hee;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.2
    • /
    • pp.421-430
    • /
    • 1992
  • The purpose of this study was to evaluate the bond strength between the composite resin and light - cured glass ionomer cement base / liners treated by the several methods. The light - cured glass ionomer cement(Vitrebond / Cavalite) were injected into cavites prepared in acrylic plates. One hundred and twenty specimens were uniformly prepared and devided into 3 groups. For the first group, primer was not applied to glass ionomer cement. For the second group, no application of primer was undertaken and light - curing procedure to uncured glass ionomer cement surface which was covered by bonding agent was undertaken. After bonding composite resin to light - cured glass ionomer surface, the specimens, were stored in $37^{\circ}C$, 100% humidity for 1 hour. The following results were obtained : 1. The omission of application of a primer did not produce a significantly poorer bond strength. 2. Light - curing technique to uncured glass ionomer cement which was covered by bonding agent did not produce a significantly poorer bonding strength. 3. The bond strength of Cavalite to composite resin was significantly higher than that of Vitrebond. 4. There was no significant difference between two different types of composite materials(Silux-Plus / Herculite XR) when it was applied to bond to glass ionomer cement.

  • PDF