• Title/Summary/Keyword: Composite pile

Search Result 192, Processing Time 0.02 seconds

Behavior of Soft Ground Improved with Fully-Partly Penetrated Sand Compaction Piles (관통-미관통 모래다짐말뚝으로 개량된 연약지반의 거동)

  • Jeong, Geunchae;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.91-99
    • /
    • 2012
  • This study describes the investigation based on centrifuge model tests for the clay ground improved by sand compaction pile. In order to clarify the failure behavior of composite ground improved by partly and fully penetrated SCPs. And, in order to compare the effect of the penetration ratio and the replacement area ratio, nine of the centrifuge tests were carried out. From the test results, settlement reduce ratio in the fully penetrated SCPs ground is bigger than that in the partly penetrated SCPs ground. It is also evaluated that angle of the failure of composite ground improved by SCP are 26, 25, $34^{\circ}$ for As=10%, 22, $29^{\circ}$ for As=30%. And as a result of rigid loading tests, surface displacement decreases linearly with the partly penetration ratio increased.

Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions (하중 및 기초조건에 따른 GCP 복합지반의 거동분석)

  • Kim, Gyeong-Eop;Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.127-137
    • /
    • 2018
  • Gravel Compaction Pile (hereinafter referred to as GCP) is a ground improvement technique by packing crushed stones on fragile clay ground, pressing it, and forming stakes on the foundation. Although many researchers have analyzed stress behavior of GCP composite ground on domestic GCP technique using laboratory experiment and field experiment, analyses of stress behavior according to the difference of stiffness of mat foundation loaded on the upper foundation of GCP composite ground have not been done actively. Therefore, this study aimed to identify the stress concentration ratio in accordance with the difference of basis stiffness by interpreting figures. To perform this, replacement ratio was changed and modelled using ABAQUS, software for finite element analysis and analyzed the stress concentration ratio, amounts of settlement, and maximum amounts of horizontal displacement of composite ground in accordance with the difference of stiffness. An analysis showed that the stress concentration ratio of rigid foundation was highly assessed than unloading of flexible foundation in case of unloading, while amounts of settlement under flexible unloading condition were slightly higher than under rigid condition. This indicates that the characteristic of stress behavior on the different stiffness of upper foundation needs to be clarified. In addition, the maximum horizontal displacement was generated in a constant level regardless of the difference of stiffness.

Improvement of Verification Method for Remedial Works through the Suggestion of Indicative Parameters and Sampling Method (정화 보조지표와 시료 채취 방법 제안을 통한 토양정화검증 제도 개선 연구)

  • Kwon, Ji Cheol;Lee, Goontaek;Kim, Tae Seung;Yoon, Jeong-Ki;Kim, Ji-in;Kim, Yonghoon;Kim, Joonyoung;Choi, Jeongmin
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.179-191
    • /
    • 2016
  • In addition to the measurement of the concentration of soil contaminants, the new idea of indicative parameters was proposed to validate the remedial works through the monitoring for the changes of soil characteristics after applying the clean up technologies. The parameters like CFU (colony forming unit), pH and soil texture were recommended as indicative parameters for land farming. In case of soil washing, water content and the particle size distribution of the sludge were recommended as indicative parameters. The sludge is produced through the particle separation process in soil washing and it is usually treated as a waste. The parameters like water content, organic matter content, CEC (cation exchange capacity) and CFU were recommended as indicative parameters for the low temperature thermal desorption method. Besides the indicative parameter, sampling methods in stock pile and the optimal minimum amount of composite soil sample were proposed. The rates of sampling error in regular grid, zigzag, four bearing, random grid methods were 17.3%, 17.6%, 17.2% and 16.5% respectively. The random grid method showed the minimum sampling error among the 4 kinds of sampling methods although the differences in sampling errors were very little. Therefore the random grid method was recommended as an appropriate sampling method in stock pile. It was not possible to propose a value of optimal minimum amount of composite soil sample based on the real analytical data due to the dynamic variation of $CV_{fund{\cdot}error}$. Instead of this, 355 g of soil was recommended for the optimal minimum amount of composite soil sample under the assumption of ISO 10381-8.

Compression Strength Test of FRP Reinforced Concrete Composite Pile (FRP-콘크리트 합성말뚝 시편의 압축강도실험)

  • Lee, Young-Geun;Choi, Jin-Woo;Park, Joon-Seok;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.19-27
    • /
    • 2011
  • In this paper, we present a part of results to develop new type hybrid FRP-concrete composite pile (i.e., concrete filled fiber reinforced plastic circular tubes, hybrid CFFT, HCFFT). The purpose of this paper is to evaluate compressive loading capacity through compressive strength test. Before compressive strength test of HCFFT, we investigated mechanical properties of pultruded fiber reinforced plastic (PFRP) and filament winding fiber reinforced plastic (FFRP). For estimating the compressive strength of HCFFT, uni-axial compression strength tests of HCFFT compression members were conducted. The test variables are compressive strengths of concrete and thickness of FFRP. In addition, uni-axial compression strength tests of concrete filled fiber reinforced plastic circular tube (CFFT) except PFRP members were conducted. The test variable in the test is thickness of FFRP. From the test result, the compressive strength of the HCFFT in larger than compressive strength of CFFT as much as 47%. It can be observed that the uni-axial compressive strength of the HCFFT increased if the concrete strength and the thickness of exterior filament winding FRP tube increased. In addition, the finite element analysis result is compared with the experimental result. The difference between the experimental and FEM results is in the range of 0.14% to 17.95%.

Centrifuge Modeling on Displacement Shapes of Composite Ground Improved by SCP and GCP (SCP 및 GCP로 개량된 복합지반의 변위 양상에 관한 원심모델링)

  • Heo, Yol;Zheng, Zhaodian;Lee, Cheokeun;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2006
  • In this study, the centrifuge model tests were carried out to evaluate the stress concentration ratio, the deformation modes of piles and the ground movement in clay deposit improved by SCP and GCP piles with changing the replacement ratio(20%, 40%, 60%) under flexible loading. Based on the results obtained, it was shown that the stresses acting on GCP was larger than those acting on SCP with the same replacement ratio. It was evaluated that the average stress concentration ratio of soft clay ground improved by GCP was slightly larger than that of SCP when the replacement ratio is 40%. Only expansion failure occurred in GCP, whereas SCP showed the expansion and shear failure simultaneously.

  • PDF

Discrete Optimum Design of the Strut Supported Temporary Structures (버팀보지지 가시설구조물의 이산화 최적설계)

  • Park, Soon-Eung;Park, Moon-Ho;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.127-134
    • /
    • 2008
  • This study is to develop the structure analysis and optimization algorithm of the strut supported temporary structure for underground constructions. Developed algorithm performs the analysis and the optimization of each strut, wale, and H pile of temporary structures separately. The design variables of nonlinear optimization consist of the cross-sections of temporary structures such as strut, wale, and H pile and the solution of the nonlinear programming is searched using for the method of successive unconstranint minimization technique. The weight of the structure is used for the object function of nonlinear programming. the constraints are derived from the specification of the temporary structures as compressive axial, bending, shear, composite stress and serviceability. The structural analysis is performed based on the elastoplastic beam theory. This developed program can be used to evaluate the applicability, convergence, and effectiveness of the temporary structures.

  • PDF

Nanoindentation behaviours of silver film/copper substrate (Ag 필름/ Cu기판의 나노인덴테이션 거동 해석)

  • Trandmh, Long;Kim, Am-Kee;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.9-17
    • /
    • 2009
  • Nanoindentation behaviours on the films of softer Ag film/harder Cu substrate structure were studied by the molecular dynamics method. As a result, it was shown that the stiffness and hardness of films were strongly dependent on the thickness of films. The stiffness and hardness increased with the thickness of film within a critical range as an inverse Hall-Petch relation. The stiffness and hardness of Cu substrate with Ag film less than 5 nm were observed to be lower than those of bulk silver. In particular, the flower-like dislocation loop was created on the interface by the interaction between dislocation pile-up and misfit dislocation during the indentation of Ag film/Cu substrate with film thickness less than 4 nm, which seemed to be associated with the drop of load in the indentation load versus displacement curve.

Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles (모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동)

  • Yoo, Nam-Jae;Jeong, Gil-Soo;Park, Byung-Soo;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

Smart monitoring system using electromagnetic waves to evaluate the integrity of reinforced concrete structural elements

  • Jong-Sub Lee;Dongsoo Lee;Youngdae Kim;Goangseup Zi;Jung-Doung Yu
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.293-306
    • /
    • 2023
  • This study proposes and demonstrates a smart monitoring system that uses transmission lines embedded in a reinforced concrete structure to detect the presence of defects through changes in the electromagnetic waves generated and measured by a time-domain reflectometer. Laboratory experiments were first conducted to identify the presence of voids in steel-concrete composite columns. The results indicated that voids in the concrete caused a positive signal reflection, and the amplitude of this signal decreased as the water content of the soil in the void increased. Multiple voids resulted in a decrease in the amplitude of the signal reflected at each void, effectively identifying their presence despite amplitude reduction. Furthermore, the electromagnetic wave velocity increased when voids were present, decreased as the water content of the soil in the voids increased, and increased with the water-cement ratio and curing time. Field experiments were then conducted using bored piles with on-center (sound) and off-center (defective) steel-reinforcement cage alignments. The results indicated that the signal amplitude in the defective pile section, where the off-center cage was poorly covered with concrete, was greater than that in the pile sections where the cage was completely covered with concrete. The crosshole sonic logging results for the same defective bored pile failed to identify an off-center cage alignment defect. Therefore, this study demonstrates that electromagnetic waves can be a useful tool for monitoring the health and integrity of reinforced concrete structures.