• Title/Summary/Keyword: Composite numbers

Search Result 145, Processing Time 0.023 seconds

The Static Collapse Characteristics of CFRP Single and Double Hat Shaped Section Members according to the Interface Number for Lightweight (경량화용 CFRP 단일 모자형 부재와 CFRP 이중 모자형 부재의 계면수 변화에 따른 정적압궤특성)

  • Hwang, Woo-Chae;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.20-25
    • /
    • 2012
  • Currently, the most important purpose in designing automobile is environment-friendly and safety performance aspect. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a wide application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. In this study, experimental investigations are carried out for CFRP single and double hat shaped section member in order to study the effect of various stacking condition. They were cured by heating to the appropriate curing temperature($130^{\circ}C$) by means of a heater at the vacuum bag of the autoclave. The stacking conditions were selected to investigate the effect of the interface numbers. The CFRP single and double hat shaped section members which manufactured from unidirectional prepreg sheets were made of 8ply. The static collapse tests performed and the collapse mode and energy absorption capability were analyzed according to interface number.

On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.261-275
    • /
    • 2019
  • The main objective of this paper is to study the axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets (GSs) under in-plane loading in the theoretical framework of the nonlocal strain gradient theory. To begin with, a graphene sheet is modeled by a two-dimensional plate subjected to simply supported ends, and supposed to have a small initial curvature. Then according to the Hamilton's principle, the nonlinear governing equations are derived with the aid of the classical plate theory and the von-karman nonlinearity theory. Subsequently, for providing a more accurate physical assessment with respect to the influence of respective parameters on the mechanical performances, the approximate analytical solutions are acquired via using a two-step perturbation method. Finally, the authors perform a detailed parametric study based on the solutions, including geometric imperfection, nonlocal parameters, strain gradient parameters and wave mode numbers, and then reaching a significant conclusion that both the size-dependent effect and a geometrical imperfection can't be ignored in analyzing GSs.

Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory

  • Rouabhia, Abdelkrim;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Heireche, Houari;Tounsi, Abdeldjebbar;Kouider Halim, Benrahou;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.695-709
    • /
    • 2020
  • The buckling properties of a single-layered graphene sheet (SLGS) are examined using nonlocal integral first shear deformation theory (FSDT) by incorporating the influence of visco-Pasternak's medium. This model contains only four variables, which is even less than the conventional FSDT. The visco-Pasternak's medium is introduced by considering the damping influence to the conventional foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The nanoplate under consideration is subjected to compressive in- plane edge loads per unit length. The impacts of many parameters such as scale parameter, aspect ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the stability investigation of the SLGSs are examined in detail. The obtained results are compared with the corresponding available in the literature.

The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells

  • Khayat, Majid;Baghlani, Abdolhossein;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.47-66
    • /
    • 2021
  • This work addresses the free vibration analysis of Functionally Graded Porous (FGP) nanocomposite truncated conical shells with Graphene PLatelet (GPL) reinforcement. In this study, three different distributions for porosity and three different dispersions for graphene platelets have been considered in the direction of the shell thickness. The Halpin-Tsai equations are used to find the effective material properties of the graphene platelet reinforced materials. The equations of motion are derived based on the higher-order shear deformation theory and Sanders's theory. The Fourier Differential Quadrature (FDQ) technique is implemented to solve the governing equations of the problem and to obtain the natural frequencies of the truncated conical shell. The combination of FDQ with higher-order shear deformation theory allows a very accurate prediction of the natural frequencies. The precision and reliability of the proposed method are verified by the results of literature. Moreover, a wide parametric study concerning the effect of some influential parameters, such as the geometrical parameters, porosity distribution, circumferential wave numbers, GPLs dispersion as well as boundary restraint conditions on free vibration response of FGP-GPL truncated conical shell is also carried out and investigated in detail.

Inverse analysis of erection process for prismatic tensegrity structures with redundant cables

  • Pei Zhang;Huiting Xiong;Jingjing Yang;Jiayan Liu
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.125-141
    • /
    • 2023
  • Firstly, a new kind of prismatic tensegrity structures with redundant cables is defined, the topology, geometry and forming conditions of which are introduced further. The development of its mechanical properties including self-stress states and structural stiffness with the increment of the twist angle is also investigated carefully. Combined with the topology of this kind of structures, a reasonable erection scheme is proposed, in which some temporary lifting points need to be set and two groups of vertical cables are tensioned in batches. Then, a simplified dynamic relaxation method is employed to track the erection process inversely, which aims to predict each intermediate equilibrium state during the construction, and give the key structural parameters that can effectively guide the construction. The removal of the active cables, the relaxation or tension of the passive cables are simulated by controlling their axial stiffness, so that the structural composition as well as the serial numbers of the elements always keep invariant regardless of the withdrawal of the slack cables. The whole analysis process is clear in concept, simple to implement and easy to popularize. Finally, several examples are given to verify the practicability and effectiveness of the proposed method further.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Study on Bread-making Quality with Barley Sourdough in Composite Bread (보리 Sourdough의 제빵성 연구)

  • Ryu, Chung-Hee;Kim, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.21 no.5
    • /
    • pp.733-741
    • /
    • 2005
  • Waxy barley flour was fermented by two kinds of starter cultures; L. plantarum and L. brevis, alone or in combination and the effect was evaluated on waxy barley and wheat composite bread quality. In all three barley sourdoughs, fermentation decreased the pH, total sugar and reducing sugar, and increased lactic acid bacteria cell numbers. However yeasts (S. cerevisiae) were reduced. There was significant difference in physicochemical characteristics between the reference(composite barley dough containing improvement agent) and the barley sourdoughs (p <0.05). Barley sourdough fermented by L. plantarum showed more desirable farinogram properties of peak time, stability and elasticity than that of the reference. The rheofermentometer data for L. brevis produced the most $CO_2$ release curve, whereas L. plantarum held maximum $CO_2$ retention differed significantly from that of the breads made with barley sourdoughs fermented with the respectives starter cultures (p < 0.05). Barley sourdough bread fermented with L. plantarum resulted in better bread quality than the reference bread. The positive effect of fermentation with L. plantarum on bread quality was evident when comparing the well developed protein-starch matrix structure of the bread baked with barley sourdough with the reference bread.

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.

A Study on Brown's Subject Classification (브라운의 주제분류법 연구)

  • Kwak, Chul-Wan
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.4
    • /
    • pp.37-50
    • /
    • 2018
  • The purpose of this study is to analyze the first edition of Brown's Subject Classification and to understand the implications of today's library classification. For this purpose, the first edition of the Subject Classification published in 1906 was analyzed. The analysis results are divided into three main areas. First, SC is divided into eleven main classes and each class is subdivided into enumerated subdivisions from 000 to 999. Second, As a method of synthesizing the classification numbers, there were three methods of synthesis. There was a flexibility to insert a new classification number at the appropriate location when a new topic that does not appear in the main table appeared. Implications for classification studies can be divided into four main categories. First, SC proposed a method of classification number synthesis for composite topics, which is an innovative method that was not available in previous library classification. Second, the subject matter was explained in various aspects through the operation of auxiliary tables supporting the facets. Third, it is possible to easily insert a new topic into the classification system by using the SC that can have a flexible classification system for each library, or to use a short classification number according to the size of the library collection. Fourth, it provided a directory that can be considered as access points for digital materials.

The n+1 Integer Factorization Algorithm (n+1 소인수분해 알고리즘)

  • Choi, Myeong-Bok;Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.107-112
    • /
    • 2011
  • It is very difficult to factorize composite number, $n=pq$ to integer factorization, p and q that is almost similar length of digits. Integer factorization algorithms, for the most part, find ($a,b$) that is congruence of squares ($a^2{\equiv}b^2$ (mod $n$)) with using factoring(factor base, B) and get the result, $p=GCD(a-b,n)$, $q=GCD(a+b,n)$ with taking the greatest common divisor of Euclid based on the formula $a^2-b^2=(a-b)(a+b)$. The efficiency of these algorithms hangs on finding ($a,b$) and deciding factor base, B. This paper proposes a efficient algorithm. The proposed algorithm extracts B from integer factorization with 3 digits prime numbers of $n+1$ and decides f, the combination of B. And then it obtains $x$(this is, $a=fxy$, $\sqrt{n}$ < $a$ < $\sqrt{2n}$) from integer factorization of $n-2$ and gets $y=\frac{a}{fx}$, $y_1$={1,3,7,9}. Our algorithm is much more effective in comparison with the conventional Fermat algorithm that sequentially finds $\sqrt{n}$ < $a$.