• Title/Summary/Keyword: Composite number

Search Result 1,293, Processing Time 0.021 seconds

Analysis of demountable steel and composite frames with semi-rigid bolted joints

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.363-380
    • /
    • 2018
  • This paper presented an integral design procedure for demountable bolted composite frames with semi-rigid joints. Moment-rotation relationships of beam-to-column joints were predicted with analytical models aiming to provide accurate and reliable analytical solutions. Among this, initial stiffness of beam-to-column joints was derived on the basis of Timoshenko's plate theory, and moment capacity was derived in accordance with Eurocodes. The predictions were validated with relevant test results prior to further applications. Frame analysis was conducted by using Abaqus software with material and geometrical nonlinearity considered. Variable lateral loads incorporating wind actions and earthquake actions in accordance with Australian Standards were adopted to evaluate the flexural behaviour of the composite frames. Strength and serviceability limit state criteria were utilized to verify configurations of designed models. A wide range of frames with the varied number of storeys and bays were thereafter programmed to ascertain bending moment envelopes under various load combinations. The analytical results suggest that the proposed approach is capable of predicting the moment-rotation performance of the semi-rigid joints reasonably well. Outcomes of the frame analysis indicate that the load combination with dead loads and live loads only leads to maximum sagging and hogging moment magnitudes in beams. As for lateral loads, wind actions are more crucial to dominate the design of the demountable composite frames than earthquake actions. No hogging moment reversal is expected in the composite beams given that the frames are designed properly. The proposed analysis procedure is demonstrated to be a simple and efficient method, which can be applied into engineering practice.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method

  • Ranzi, G.;Bradford, M.A.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.131-158
    • /
    • 2009
  • This paper presents a modelling technique for the nonlinear analysis of composite steel-concrete beams with partial shear interaction. It extends the applicability of two stiffness elements previously derived by the authors using the direct stiffness method, i.e. the 6DOF and the 8DOF elements, to account for material nonlinearities. The freedoms are the vertical displacement, the rotation and the slip at both ends for the 6DOF stiffness element, as well as the axial displacement at the level of the reference axis for the 8DOF stiffness element. The solution iterative scheme is based on the secant method, with the convergence criteria relying on the ratios of the Euclidean norms of both forces and displacements. The advantage of the approach is that the displacement and force fields of the stiffness elements are extremely rich as they correspond to those required by the analytical solution of the elastic partial interaction problem, thereby producing a robust numerical technique. Experimental results available in the literature are used to validate the finite element proposed in the paper. For this purpose, those reported by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998, 1999) and Ansourian (1981) are utilised; these consist of six simply supported beams with a point load applied at mid-span inducing positive bending moment in the beams, three simply supported beams with a point load applied at mid-span inducing negative bending moment in the beams, and six two-span continuous composite beams respectively. Based on these comparisons, a preferred degree of discretisation suitable for the proposed modelling technique expressed as a function of the ratio between the element length and depth is proposed, as is the number of Gauss stations needed. This allows for accurate prediction of the nonlinear response of composite beams.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

A CAWL-based Context-Aware Workflow System for Composite Workflow Services (복합 워크플로우 서비스를 위한 CAWL 기반 상황인지 워크플로우 시스템)

  • Choi, Jong-Sun;Cho, Yong-Yun;Choi, Jae-Young
    • The KIPS Transactions:PartA
    • /
    • v.17A no.2
    • /
    • pp.93-102
    • /
    • 2010
  • There are many complicated situations which could be occurred in users' surroundings, so it is required to develop automation services to provide users with appropriate services in ubiquitous computing environments. However, most of the current context-aware workflow systems express context-aware services only with a single workflow. Therefore, they have difficulties in providing users with various and composite services by combining different workflows. In this paper we propose a CAWL-based context-aware workflow system, where CAWL is a context-aware workflow language to express a composite workflow model by describing individual service workflows. The proposed system can provide users with various composite workflow services based on a service scenario, which is described with CAWL. And by reusing a number of single workflows to construct composite workflow services, it is possible to save time and effort to develop context-aware workflows.

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

New composite traits for joint improvement of milk and fertility trait in Holstein dairy cow

  • Ghiasi, Heydar;Piwczynski, Dariusz;Sitkowska, Beata;Gonzalez-Recio, Oscar
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1303-1308
    • /
    • 2021
  • Objective: The objective of this study was to define a new composite trait for Holstein dairy cows and evaluate the possibility of joint improvement in milk and fertility traits. Methods: A data set consisting 35,882 fertility related records (days open [DO], calving interval [CI], and number of services per conception [NSC], and total milk yield in each lactation [TMY]) was collected from 1998 to 2016 in Polish Holstein-Friesian breed herds. In this study TMY, DO, CI, and lactation length of each cow was used to obtain composite milk and fertility traits (CMF). Results: Moderate heritability (0.15) was estimated for composite trait that was higher than heritability of female fertility related traits: DO 0.047, CI 0.042, and NSC 0.014, and slightly lower than heritability of TMY 0.19. Favourable genetic correlations (-0.87) were estimated between CMF with TMY. Spearman rank correlation coefficients between breeding value of CMF with DO, CI, and TMY were high (>0.94) but with NSC were moderate (0.64). Selection on CMF caused favourable correlated genetic gains for DO, CI, and TMY. Different selection indices with different emphasis on fertility and milk production were constructed. The amount of correlated genetic gains obtained for DO and total milk production according to selection in CMF were higher than of genetic gains obtained for DO and TMY in selection indices with different emphasis on milk and fertility. Conclusion: The animal selection only based on a composite trait - CMF proposed in current study would simultaneously lead to favourable genetic gains for both milk and fertility related traits. In this situation CMF introduced in current study can be used to overcome to limitations of selection index and CMF could be useful for countries that have problems in recording traits, especially functional traits.

Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon (야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.157-164
    • /
    • 2021
  • Recently, a number of studies have been conducted on photocatalysts and adsorbents that can remove harmful substances to improve environmental problems related to fine particles. In this study, a porous foam composites were fabricated using palm-based activated carbon having a large amount of micro-pores and foam concrete with a significantly larger total pore volume compared to general construction materials. To evaluate the adsorption potential of fine particles, the pore structure of the foam composites were analyzed. For the analysis of the pore structure of the foam composite, BET and Harkins-jura theory were applied from the measured nitrogen adsorption isotherm. From the results of the analysis, the specific surface area and micro-pore volume of the foam composite containing activated carbon increased significantly compared to Plain. As thereplacement of activated carbon increased, the specific surface area and micro-pore volume of the foam composite tended to increase. It seems that the foam composite has high adsorption performance for gaseous fine particle precursor such as nitrogen oxides.

Stochastic failure analysis of [0/θ]s laminated composite plate containing edge crack and voids using XFEM

  • Ashok B. Magar;Achchhe Lal
    • Advances in materials Research
    • /
    • v.13 no.4
    • /
    • pp.299-319
    • /
    • 2024
  • Due to higher strength-to-weight ratio of composite laminates, they find uses in many weight-sensitive applications like aerospace, automobile and marine structures. From a reliability point of view, accurate prediction of failure of these structures is important. Due to the complexities in the manufacturing processes of composite laminates, there is a variation in the material properties and geometric parameters. Hence stochastic aspects are important while designing the composite laminates. Many existing works of composite laminate failure analysis are based on the deterministic approach but it is important to consider the randomness in the material properties, geometry and loading to predict accurate failure loads. In this paper the statistics of the ultimate failure load of the [0/θ]s laminated composite plate (LCP) containing the edge crack and voids subjected to the tensile loading are presented in terms of the mean and coefficient of variance (COV). The objective is to better the efficacy of laminate failure by predicting the statistics of the ultimate failure load of LCP with random material, geometric and loading parameters. The stochastic analysis is done by using the extended finite element method (XFEM) combined with the second-order perturbation technique (SOPT). The ultimate failure load of the LCP is obtained by ply-by-ply failure analysis using the ply discount method combined with the Tsai-Wu failure criterion. The aim is to know the effect of the stacking sequence, crack length, crack angle, location of voids and number of voids on the mean and corresponding COV of the ultimate failure load of LCP is investigated. The results of the ultimate failure load obtained by the present method are in good agreement with the existing experimental and numerical results. It is observed that [0/θ]s LCPs are very sensitive to the randomness in the crack length, applied load, transverse tensile strength of the laminate and modulus of elasticity of the material, so precise control of these parameters is important. The novelty of the present study is, the stochastic implementation in XFEM for the failure prediction of LCPs containing crack and voids.