• 제목/요약/키워드: Composite laminates

검색결과 647건 처리시간 0.027초

Interlaminar stresses and delamination of composite laminates under extension and bending

  • Nguyen, Tien Duong;Nguyen, Dang Hung
    • Structural Engineering and Mechanics
    • /
    • 제25권6호
    • /
    • pp.733-751
    • /
    • 2007
  • The metis element method (Hung 1978) has been applied to analyse free edge interlaminar stresses and delamination in composite laminates, which are subjected to extension and bending. The paper recalls Lekhnitskii's solution for generalized plane strain state of composite laminate and Wang's singular solution for determination of stress singularity order and of eigen coefficients $C_m$ for delamination problem. Then the formulae of metis displacement finite element in two-dimensional problem are established. Computation of the stress intensity factors and the energy release rates are presented in details. The energy release rate, G, is computed by Irwin's virtual crack technique using metis elements. Finally, results of interlaminar stresses, the three stress intensity factors and the energy release rates for delamination crack in composite laminates under extension and bending are illustrated and compared with the literature to demonstrate the efficiency of the present method.

초음파 트랜스듀셔 투과법을 이용한 CFRP 복합적층판의 특성평가 (Characteristics Evaluation of CFRP Composite Laminates Using a Through-Transmission Method of Ultrasonic Transducers)

  • 임광희;나승우;강태식;김선규;김지훈;이현;박제웅;심재기;양인영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.401-406
    • /
    • 2001
  • When propagating the thickness direction of composite laminates ultrasound waves interacts strongly with the orientation and sequence of the plies in a layup. Also the layup orientation greatly influences its properties in a composite laminate. If one ply of the layup orientation is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. Those may add a substantial cost to the product since the test is both labor hard and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and require less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite lam mates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. It is found that a high probability shows between the model and tests developed in characterizing cured layups of the laminates.

  • PDF

Damage of scarf-repaired composite laminates subjected to low-velocity impacts

  • Cheng, Xiaoquan;Zhao, Wenyi;Liu, Shufeng;Xu, Yunyan;Bao, Jianwen
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.199-213
    • /
    • 2014
  • The damage characters of scarf repaired composite laminates subjected to low-velocity impact with various energy levels at different locations are studied experimentally. The results are compared with those of the original laminates which have no initial damage and don't need repair. The impact load-time history of the specimens, the velocity-time curves of the impactor, the post impact compressive strength of the specimens and the C-scan photographs of the damaged regions are obtained. The delamination threshold load and damage character of the specimen section at impact point are also studied. The results have shown that the impact response of a repaired composite laminate is sensitive to the location of the impact. The impact load and the delamination threshold load have shown different characters for specimens with different impact locations. The debonding characters of the adhesive and compressive strength after impact of the specimens are also influenced by impact locations.

저속충격을 받는 복합적층판의 충격거동에 대한 확률분포 특성 (Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact)

  • 하승철;김인걸;이석제;조상규;장문호;최익현
    • Composites Research
    • /
    • 제22권6호
    • /
    • pp.18-22
    • /
    • 2009
  • 본 논문에서는 복합적층판의 저속충격실험을 통하여 충격력과 충격거동의 관계를 확인하였다. 또한 육안으로 확인하기 어려운 손상역영을 탐지하기 위하여 비파괴검사인 c-scan을 이용하였다. CAI실험을 통하여 저속충격을 받은 복합적층판의 압축강도를 측정하였다. 저속충격실험, 비파괴검사, CAI실험을 통한 복합적층판의 저속충격거동 특성을 확인하기 위해 몬테카를로 시뮬레이션을 적용하여 가상의 확률분포를 나타냈다. 가시화된 통계적 확률분포를 이용하여 주요변수들을 비교 및 분석하였다.

인장하중방향 변화를 받는 의사등방성 복합재 적층판의 피로손상 (Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions)

  • 김택현
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.80-85
    • /
    • 1999
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of [0/-60/+60]a laminates and [+30/-30/90]s lamina tes were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of [+30/-30/90]s is very different from that of [0/-60/+60]s. The position of delamination generated at AS4/Epoxy and AS$/PEEK laminates were differentiated by the matrix difference that is, we suppose, the value of both GIcr(critical energy release rate of mode-I) and GIIIcr(critical energy release rate of mode-III) difference.

  • PDF

자유단 충간분리를 갖는 복합재 적층판의 최종 파괴강도 (Ultimate Strength of Composite Laminates with Free-Edge Delamination)

  • 양광영;윤성운;김재열
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.59-64
    • /
    • 2002
  • This paper presets experimental and analytical studies of ultimate strength of [$[30_2/-30_2/90]_S$ carbon/epoxy laminates with free-edge delamination under uniaxial tension. We performed tensile teat far laminates with Telflon inserted on interfaces to simulate initial free-edge delamination, The experiment reveals that extensional stiffness of the laminate decreases by the initiation of the delamination, and that strength of the laminate without delamination is smaller than that of the laminates with delamination. Generalized quasi-three delamination finite element analysis, which employs energy release rate and maximum stress criteria, predicts the ultimate strength of the laminates with sufficient accuracy.

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions

  • Kim, In-Kweon;Kong, Chang-Duk;Han, Kyung-Seop
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.483-489
    • /
    • 2000
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of $[0/-60/60]_s$ laminates and $[30/-30/90]_s$ laminates were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of $[30/-30/90]_s$ is very different from that of $[0/-60/60]_s$. The experimental results are compared with the result obtained from the method for determining strain energy release rate components proposed by the authors. The analytical results were in good agreement with the experimental results. It is proved that the failure criterion based on the strain energy release rate is an appropriate approach to predict the initiation and growth of delaminations under cyclic loading.

  • PDF

Implementation of a micro-meso approach for progressive damage analysis of composite laminates

  • Hosseini-Toudeshky, H.;Farrokhabadi, A.;Mohammadi, B.
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.657-678
    • /
    • 2012
  • The mismatch of ply orientations in composite laminates can cause high interlaminar stress concentrations near the free edges. Evaluation of these interlaminar stresses and their role in the progressive damage analysis of laminates is desirable. Recently, the authors developed a new method to relate the physically based micromechanics approach with the meso-scale CDM considering matrix cracking and induced delamination. In this paper, the developed method is applied for the analysis of edge effects in various angle-ply laminates such as $[10/-10]_{2s}$, $[30/-30]_{2s}$ and $[45/-45]_{2s}$ and comparing the results with available traditional CDM and experimental results. It is shown that the obtained stress-strain behaviors of laminates are in good agreement with the available experimental results and even in better agreement than the traditional CDM results. Variations of the stresses and stiffness components through the laminate thickness and near the free edges are also computed and compared with the available CDM results.

부직포가 예각 적층판의 기계적 거동에 미치는 효과 (Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates)

  • 정성균
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.