• Title/Summary/Keyword: Composite floor slab

Search Result 66, Processing Time 0.021 seconds

Flexural Performance Evaluation of Semi-slim floor Composite Beams for Reduction of Story Height (층고절감을 위한 반슬림플로어 합성보의 휨성능 평가)

  • Lee, E.T.;Lee, Sang Hoon;Jang, Bo Ra
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.165-173
    • /
    • 2008
  • In order to promote the practicality of high-rise steel buildings, the development of structural system which have the better fire resistance, the changeable plan, and the quality control of construction with general composite beams is needed. In this research, new semi-slim floor which the defect of general slim floor was complemented was evaluated to investigate the concrete integration with slim-flor beam and the flexural performance. 5 simply supported semi-slim floor beam tests were performed with parameters; structural form of slab support beam, slab thickness, with or without web opening, and shear connection. Experimental results showed that all specimen s had good ductile behavior.

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi;Marco A. Pisani;Marco Simoncelli
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.

A Study on Adjustment of Prediction Equation for Natural Frequency Using the Simplification of Section Transformation Method of Composite Deck Plate Floor Systems (합성 데크 플레이트 바닥구조의 단면환산 단순화를 통한 고유진동수 예측식의 보정에 관한 연구)

  • 임지훈;김희철;홍원기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.731-738
    • /
    • 2001
  • The conventional techniques for the prediction of natural frequency are often used to estimate the floor vibration. However. the predicted frequency differs significantly from the measured one since the predicted equation is not able to proper1y treat various material type. Transformation of slab section is necessary to predict natural frequency of composite deck plate, and this effort is complicated due to the various shape of each deck plate. In this study, a new simplified methodology to transform slab section is proposed, which treats effective depth as the distance from the top of a concrete topping to neutral axis of each deck plate. Finally proposed equation with fairly reasonable result compared to the measured values is obtained. based on the modification of vibration equation from LRFD theory. This efforts enhance errors in predicting frequency up to 15%.

  • PDF

A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking

  • Battista, Ronaldo C.;Varela, Wendell D.
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.467-478
    • /
    • 2019
  • Composite floor structures formed by continuous slab panels may be susceptible to excessive vibrations, even when properly designed in terms of ultimate limit state criteria. This is due to the inherent vibration characteristics of continuous floor slabs composed by precast orthotropic reinforced concrete panels supported by steel beams. These floor structures display close spaced multimode vibration frequencies and this dynamic characteristic results in a non-trivial vibration problem. Structural stiffening and/or insertion of struts between floors are the usual tentative solution applied to existing vibrating floor structures. Such structural alterations are in general expensive and unsuitable. In this paper, this vibration problem is analyzed on the basis of results obtained from experimental measurements in typical composite floors and their theoretical counterpart obtained with computational modeling simulations. A passive control system composed by multiple synchronized dynamic attenuators (MSDA) was designed and installed in these floor structures and its efficiency was evaluated both experimentally and through numerical simulations. The results obtained from experimental tests of the continuous slab panels under human walking dynamic action proved the effectiveness of this control system in reducing vibrations amplitudes.

Serviceability Evaluation of Slim Composite Floor System (슬림 합성보 바닥시스템의 사용성 평가)

  • Eun, Hee-Chang
    • KIEAE Journal
    • /
    • v.8 no.6
    • /
    • pp.63-70
    • /
    • 2008
  • Slim floor construction is becoming used throughout many countries. It combines the advantages of flat slab construction with significant inherent resistance to fire. The slim floor system with web openings leads to the reduction of its self-weight. Although the system has enough strength and stiffness, it is necessary to evaluate and improve the effects of dynamic vibration to be able to annoy the residents. Thus, this study evaluates the serviceability of vibration effects based on the dynamic test of five slim composite beams. Based on the experimental results, the initial stiffness and natural frequency of all specimens exhibit the similar trend regardless of the opening and the shape of cross section. The decrease in natural frequency is deeply related to the reduction in the stiffness of specimens and thus, it can be concluded that the damage of slim composite floor can be detected by the measurement of natural frequency instead of the load-carrying capacity and the stiffness.

Effect of Constructional Deflection of Composite Beam on Concrete Ponding in Metal Deck Slab (합성보의 시공중 처짐이 합성데크슬래브의 콘크리트 고임에 미치는 영향)

  • Kim, Young-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.99-106
    • /
    • 2002
  • In the composite deck system, beams and deck plates deflect during construction. This lens-shaped deflection may cause problems in the serviceability of a building. Therefore, it should be compensated to be level. Several methods for leveling of floor slab are available, such as (1) increasing stiffness of structural members, (2) propping floor system, (3) cambering beams, (4) pouring additional concrete. In this study, additional weight and volume of concrete for level compensation are examined for various size of floors.

New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling

  • Tahar, Hassaine Daouadji;Tayeb, Bensatallah;Abderezak, Rabahi;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.319-332
    • /
    • 2021
  • The wood-concrete composite is an interesting solution in the field of Civil Engineering to create high performance bending elements for bridges, as well as in the building construction for the design of wood concrete floor systems. The authors of this paper has been working for the past few years on the development of the bonding process as applied to wood-concrete composite structures. Contrary to conventional joining connectors, this assembling technique does ensure an almost perfect connection between wood and concrete. This paper presents a careful theoretical investigation into interfacial stresses at the level of the two interfaces in composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate under a uniformly distributed load. The model is based on equilibrium and deformations compatibility requirements in all parts of the strengthened composite beam, i.e., the wooden beam, RC slab, the CFRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the CFRP- wooden-concrete hybrid structures.

Structural Evaluation and Remediation of Floor Slab Deflection

  • Park, Ki-Dong;Kim, Dae-Young;Joung, Dae-Ki
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • A 4-story reinforced concrete structure built above an underground parking garage shows some slab deflections, and the deflections of the concrete floor slabs are proposed to be alleviated by the application of light-weight topping material in conjunction with localized strengthening of the slabs. The application of light-weight concrete topping on the existing slab has been simulated and its performance to anticipated loads has been analyzed. The application of light-weight topping material imposes additional weight on the exiting floor slabs. This added weight on the existing slabs causes over-stressing of the slabs. This over-stressing can be alleviated by enhancing the load carrying capacity of the existing slabs. Additional load carrying capacity in the existing slabs can be developed by localized strengthening of the slabs utilizing techniques such as the application of fiber-reinforced composites on the bottom surface of the slabs, and application of fiber-reinforced composites adequately complements the capacity of the existing slabs to bear the additional load imposed by light-weight leveling material. Additional moments in the beam and columns induced by the application of the light-weight topping material were tabulated and compared with capacity. The moment D/C ratios of the beam and columns are well the range of acceptable limits, and the beam and columns are not overstressed by the application of the surcharge.

  • PDF

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF

Non-uniform shrinkage in simply-supported composite steel-concrete slabs

  • Al-Deen, Safat;Ranzi, Gianluca;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.375-394
    • /
    • 2015
  • This paper presents the results of four long-term experiments carried out to investigate the time-dependent behaviour of composite floor slabs with particular attention devoted to the development of non-uniform shrinkage through the slab thickness. This is produced by the presence of the steel deck which prevents moisture egress to occur from the underside of the slab. To observe the influence of different drying conditions on the development of shrinkage, the four 3.3 m long specimens consisted of two composite slabs cast on Stramit Condeck $HP^{(R)}$ steel deck and two reinforced concrete slabs, with the latter ones having both faces exposed for drying. During the long-term tests, the samples were maintained in a simply-supported configuration subjected to their own self-weight, creep and shrinkage for four months. Separate concrete samples were prepared and used to measure the development of shrinkage through the slab thickness over time for different drying conditions. A theoretical model was used to predict the time-dependent behaviour of the composite and reinforced concrete slabs. This approach was able to account for the occurrence of non-uniform shrinkage and comparisons between numerical results and experimental measurements showed good agreement. This work highlights the importance of considering the shrinkage gradient in predicting shrinkage deformations of composite slabs. Further comparisons with experimental results are required to properly validate the adequacy of the proposed approach for its use in routine design.