• Title/Summary/Keyword: Composite fiber

Search Result 3,649, Processing Time 0.034 seconds

A Study on Structural Strength Assessment of Polyethylene Boat (폴리에틸렌 보트의 구조강도 평가에 관한 연구)

  • Cho, Seok-Swoo;Kwak, Won-Min;Ham, Bum-Sik;Jo, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1045-1053
    • /
    • 2013
  • Boat or yacht hull has been built mainly by FRP composite materials. FRP boat hull manufacturing begins to be restricted after the year 2000 under international regulation on ocean environment safety. The alternative of FRP has been proposed by many boat builders and high strength aluminium is considered as its standard material. But high strength aluminium is very expensive as boat hull material. In this study, boat hull is considered to be built by high density polyethylene and its structural strength is estimated by longitudinal strength test method on small craft. Tensile strength of polyethylene boat hull material is higher than that of FRP boat hull material. But safety factor of polyethylene boat hull is more than that of FRP boat hull. These study results indicate structural integrity and quality control of polyethylene boat is better than those of FRP boat.

Pilot Test with Pervaporation Seperation of Aqueous IPA Using a Composite PEI/PDMS Membrane Module (IPA/물 혼합액의 PEI/PDMS 복합막 모듈을 이용한 투과증발 파일롯 분리특성)

  • Cheon, Bong Su;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.385-390
    • /
    • 2015
  • To determine the pervaporation separation characteristics of IPA/water mixtures, PEI/PDMS hollow fiber membrane module commercialized by Airrane Co. was subjected to both lab and pilot tests. The flux of $0.52kg/m^2h$ and IPA concentration of 68.5% at $25^{\circ}C$ were obtained whereas the $1.368kg/m^2h$ and 61.2% were measured at $55^{\circ}C$. In order to realized the durability of the module, the long-term test (at $50^{\circ}C$) of 100 days has been conducted and as a result, the flux $1.03{\sim}1.15kg/m^2h$ and IPA concentration 61.8~62.5% were maintained with the initial values.

Failure Behavior of Pin-jointed Cylindrical Composites Using Acoustic Emission Technique (AE기법을 이용한 원통형 복합재의 핀 체결부 파괴거동)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Chan-Gyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test with acoustic emission technique. The composites were fabricated by a filament winding process, and three types of laminated patterns were considered. Type 1 was fabricated with stitch, Type 2 was fabricated without stitich and Type 3 was fabricated with prepregs. According to the results, bearing strength of Type 1 was 3.3% lower than that of Type 2 and that of Type 3 was highest. Type 1 and Type 2 revealed a net-tension failure mode, respectively, whereas Type 3 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the Type 3 was higher than that of the Type 1 and Type 2. Therefore, the Type 3 was found to be structurally safer than the Type 1 and Type 2.

Failure Behavior of Pin-jointed Composites under Hygrothermal Environments (열습환경을 고려한 핀 체결부 복합재 파괴거동)

  • Kim, Changyu;Hwang, Youngeun;Yoon, Sungho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.31-38
    • /
    • 2013
  • This research analyzed the acoustic emission signals collected from the pin loading tests and investigated the effect of hygrothermal exposure on the fracture behavior of the pin-jointed carbon fiber/epoxy composites. The composite specimens include: the Base specimen that has not been exposed to any environments, the RT specimen that has been immersed in room temperature water, and the HT specimen that has been immersed in high temperature water. According to the pin loading test, the RT and the HT specimens showed 2.2% and 13% decreases in the bearing strength compared to the Base specimen, respectively. The analysis of the acoustic emission signals showed different fracture acceleration points for three types of the specimens. Furthermore, for the RT and the HT specimens, the event from the matrix crack signals in the composites decreased. This shows the effect of the hygrothermal conditions on the acoustic emission signals. Additionally, upon investigating the fracture behaviors of the pin-jointed composites, the exposing specimens to hygrothermal environments decreases the interfacial characteristics of the composites.

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

Platinum-Catalyzed and Ion-Selective Polystyrene Fibrous Membrane by Electrospinning and In-Situ Metallization Techniques

  • Hong, Seung-Hee;Lee, Sun-Ae;Nam, Jae-Do;Lee, Young-Kwan;Kim, Tae-Sung;Won, Sung-Ho
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.204-211
    • /
    • 2008
  • A platinum-catalyzed polyelectrolyte porous membrane was prepared by solid-state compression of electrospun polystyrene (PS) fibers and in-situ metallization of counter-balanced ionic metal sources on the polymer surface. Using this ion-exchange metal-polymer composite system, fiber entangled pores were formed in the interstitial space of the fibers, which were surrounded by sulfonic acid sites ($SO_3^-$) to give a cation-selective polyelectrolyte porous bed with an ion exchange capacity ($I_{EC}$) of 3.0 meq/g and an ionic conductivity of 0.09 S/cm. The Pt loading was estimated to be 16.32 wt% from the $SO_3^-$ ions on the surface of the sulfonated PS fibers, which interact with the cationic platinum complex, $Pt(NH_3)_4^{2+}$, at a ratio of 3:1 based on steric hindrance and the arrangement of interacting ions. This is in good agreement with the Pt loading of 15.82 wt% measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The Pt-loaded sulfonated PS media showed an ionic conductivity of 0.32 S/cm. The in-situ metallized platinum provided a nano-sized and strongly-bound catalyst in robust porous media, which highlights its potential use in various electrochemical and catalytic systems.

Behavior of a steel bridge with large caisson foundations under earthquake and tsunami actions

  • Kang, Lan;Ge, Hanbin;Magoshi, Kazuya;Nonaka, Tetsuya
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.575-589
    • /
    • 2019
  • The main focus of this study is to numerically investigate the influence of strong earthquake and tsunami-induced wave impact on the response and behavior of a cable-stayed steel bridge with large caisson foundations, by assuming that the earthquake and the tsunami come from the same fault motion. For this purpose, a series of numerical simulations were carried out. First of all, the tsunami-induced flow speed, direction and tsunami height were determined by conducting a two-dimensional (2D) tsunami propagation analysis in a large area, and then these parameters obtained from tsunami propagation analysis were employed in a detailed three-dimensional (3D) fluid analysis to obtain tsunami-induced wave impact force. Furthermore, a fiber model, which is commonly used in the seismic analysis of steel bridge structures, was adopted considering material and geometric nonlinearity. The residual stresses induced by the earthquake were applied into the numerical model during the following finite element analysis as the initial stress state, in which the acquired tsunami forces were input to a whole bridge system. Based on the analytical results, it can be seen that the foundation sliding was not observed although the caisson foundation came floating slightly, and the damage arising during the earthquake did not expand when the tsunami-induced wave impact is applied to the steel bridge. It is concluded that the influence of tsunami-induced wave force is relatively small for such steel bridge with large caisson foundations. Besides, a numerical procedure is proposed for quantitatively estimating the accumulative damage induced by the earthquake and the tsunami in the whole bridge system with large caisson foundations.

Computational Analysis of Heracron Fabric at High-velocity Impact (Heracron 직물의 고속 충돌 해석)

  • Kim, YunHo;Choi, Chunghyeon;Kumar, Sarath Kumar Sathish;Cha, JiHun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.120-126
    • /
    • 2019
  • Advanced fiber fabrics have been utilized in not only anti-stabbing and bullet-proofing for body armor but also various industrial fields including vehicular armor and spacecraft structure. Furthermore, there have been a number of research to improve the ballistic performance of advanced fabrics introducing many computational approaches. In our research, an advanced fabric, Heracron manufactured in South Korea was modelled firstly using Autodyn, a commercial software specializing in impact and explosion phenomenon. The sensitivity of the input parameters was also confirmed by conducting simulations. To verify the numerical modelling, we measured and compared the simulation results with velocity decrements after impact involving one, three, and five layers of Heracron under 200-500 m/s impacts by an aluminum spherical projectile. The Heracron fabric was successfully modelled using Autodyn.

Surface properties and interception behaviors of GO-TiO2 modified PVDF hollow fiber membrane

  • Li, Dongmei;Liang, Jinling;Huang, Mingzhu;Huang, Jun;Feng, Li;Li, Shaoxiu;Zhan, Yongshi
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2019
  • To investigate surface properties and interception performances of the new modified PVDF membrane coated with Graphene Oxide (GO) and nano-$TiO_2$ (for short the modified membrane) via the interface polymerization method combined with the pumping suction filtration way, filtration experiments of the modified membrane on Humic Acid (HA) were conducted. Results showed that the contact angle (characterizing the hydrophilicity) of the modified membrane decreased from $80.6{\pm}1.8^{\circ}$ to $38.6{\pm}1.2^{\circ}$. The F element of PVDF membrane surface decreased from 60.91% to 17.79% after covered with GO and $TiO_2$. O/C element mass ratio has a fivefold increase, the percentage of O element on the modified membrane surface increased from 3.83 wt% to 20.87%. The modified membrane surface was packed with hydrophilic polar groups (like -COOH, -OH, C-O, C=O, N-H) and a functional hydrophilic GO-polyamide-$TiO_2$ composite configuration. This configuration provided a rigid network structure for the firm attachment of GO and $TiO_2$ on the surface of the membrane and for a higher flux as well. The total flux attenuation rate of the modified membrane decreased to 35.6% while 51.2% for the original one. The irreversible attenuation rate has dropped 71%. The static interception amount of HA on the modified membrane was $158.6mg/m^2$, a half of that of the original one ($295.0mg/m^2$). The flux recovery rate was increased by 50%. The interception rate of the modified membrane on HA increased by 12% approximately and its filtration cycle was 2-3 times of that of the original membrane.

Behavior of three-tube buckling-restrained brace with circumference pre-stress in core tube

  • Li, Yang;Qu, Haiyan;Xiao, Shaowen;Wang, Peijun;You, Yang;Hu, Shuqing
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.81-96
    • /
    • 2019
  • The behavior of a new Three-Tube Buckling-Restrained Brace (TTBRB) with circumference pre-stress (${\sigma}_{{\theta},pre}$) in core tube are investigated through a verified finite element model. The TTBRB is composed of one core tube and two restraining tubes. The core tube is in the middle to provide the axial stiffness, to carry the axial load and to dissipate the earthquake energy. The two restraining tubes are at inside and outside of the core tube, respectively, to restrain the global and local buckling of the core tube. Based on the yield criteria of fringe fiber, a design method for restraining tubes is proposed. The applicability of the proposed design equations are verified by TTBRBs with different radius-thickness ratios, with different gap widths between core tube and restraining tubs, and with different levels of ${\sigma}_{{\theta},pre}$. The outer and inner tubes will restrain the deformation of the core tube in radius direction, which causes circumference stress (${\sigma}_{\theta}$) in the core tube. Together with the ${\sigma}_{{\theta},pre}$ in the core tube that is applied through interference fit of the three tubes, the yield strength of the core tube in the axial direction is improved from 160 MPa to 235 MPa. Effects of gap width between the core tube and restraining tubes, and ${\sigma}_{{\theta},pre}$ on hysteretic behavior of TTBRBs are presented. Analysis results showed that the gap width and the ${\sigma}_{{\theta},pre}$ can significantly affect the hysteretic behavior of a TTBRB.