• Title/Summary/Keyword: Composite Solid Propellants

Search Result 25, Processing Time 0.018 seconds

Preliminary Study of a Turbopump Pyro Starter (터보펌프 파이로 시동기 기초연구)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The feasibility study into the development of turbine spinners, which start up the turbo-pump, has been carried out and the design requirements and parameters ranges have been presented. Turbine spinners use the solid propellant as such composite propellant based AN compound with high energy plasticizers, coolants, and phase stabilizer which relieves a sensible volume change due to the phase transformation of AN near room temperature. Propellants which have a homing rate of $0.2{\sim}0.3\;mm/s$ and pressure exponent ranged from 0.3 to 0.6, showed stable burn-out in the standard motor tests. Both the magnitude of ignition energy and its thermal transfer mechanism have been proved to have a tangible effect on the ignition of the pyre starter, and the results of this study showed that a flame temperature of 1400K would be quite adequate to get a stable ignition for the AN composite propellant.

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat (C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구)

  • Kim, Young In;Lee, Soo Yong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-49
    • /
    • 2017
  • The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.

A Study on the Burning Characteristics of N-5 Propellant Embedded with Metal Wires (금속선을 삽입한 N-5복기 추진제의 연소 특성)

  • 유지창;박영규;김인철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 1999
  • Burning characteristics of solid propellants embedded with four kinds of metal wires(Ag, Cu, Al, Ni-Cr wire) were studied with varying wire diameters(O.10.8 mm) lot N-5 propellant. It was found that the order of the burning rate increment ratio($r_w$/$r_sb$) was Ag wire > Cu wire > Al wire> Ni-Cr wire which was the same as the order of the magnitude of thermal diffusivity. The burning rate increment ratio($r_w$/$r_sb$) of N-5 propellant was less than that of composite Propellant because of the difference of adiabatic flame temperature and flame structure. When Ag, Cu and Al wire having high thermal diffusivity were embedded in N-5 propellant, the plateau and mesa characteristics of the double base propellant were disappeared, but not disappeared in the case of propellant embedded with Ni-Cr wire due to its poor thermal conductivity.

  • PDF

Genotoxicity of Aluminum Oxide ($Al_2O_3$) Nanoparticle in Mammalian Cell Lines

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mi-Kyung;Youk, Da-Young;Kim, Ji-Hee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.172-178
    • /
    • 2009
  • Nanoparticles are small-scale substances (<100 nm) with unique properties, complex exposure and health risk implications. Aluminum oxide ($Al_2O_3$) nanoparticles (NP) have been widely used as abrasives, wear-resistant coatings on propeller shafts of ships, to increase the specific impulse per weight of composite propellants used in solid rocket fuel and as drug delivery systems to increase solubility. However, recent studies have shown that nano-sized aluminum (10 nm in diameter) can generate adverse effects, such as pulmonary response. The cytotoxicity and genotoxicity of $Al_2O_3$ NP were investigated using the dye exclusion assay, the comet assay, and the mouse lymphoma thymidine kinase (tk$^{+/-}$) gene mutation assay (MLA). IC$_{20}$ values of $Al_2O_3$ NP in BEAS-2B cells were determined the concentration of 273.44 $\mu$g/mL and 390.63 $\mu$g/mL with and without S-9. However IC$_{20}$ values of $Al_2O_3$ NP were found nontoxic in L5178Y cells both of with and without S-9 fraction. In the comet assay, L5178Y cells and BEAS-2B cells were treated with $Al_2O_3$ NP which significantly increased 2-fold tail moment with and without S-9. Also, the mutant frequencies in the $Al_2O_3$ NP treated L5178Y cells were increased compared to the vehicle controls with S-9. The results of this study indicate that $Al_2O_3$ NP can cause primary DNA damage and cytotoxicity but not mutagenicity in cultured mammalian cells.

Composite Solid Propellants for Propulsion System Including a Yellow Iron Oxide (2) (황색산화철을 포함하는 혼합형 고체추진제의 특성에 관한 연구 (2))

  • Park, Sungjun;Kim, Kyungmin;Park, Jungho;Rho, Taeho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.12-17
    • /
    • 2020
  • The mechanical properties of the propellant with yellow iron oxide were slightly increased compared to the propellant with red iron oxide. The propellant with yellow iron oxide used two types of AP. As the ratio of small particles of AP increased, the burning rate increased. The propellant may be applied to the propellant under operating conditions of 17.5 mm/sec or less having a pressure index of 0.5. The burning rate downs in the mixer scale-up. The stress at maximum load of propellant decreased and the strain at maximum load increased in the mixer scale-up. The yellow iron oxide did not affect the adhesive force between the insulation/liner/propellant.