• 제목/요약/키워드: Composite Residual Stress

검색결과 234건 처리시간 0.035초

핫프레스법에 의한 TiNi/Al6061 형상기억복합재료의 제조 및 기계적 특성에 관한 연구 (Fabrication and Characterization of TiNi Shape Memory Alloy Fiber Reinforced 6061 Aluminum Matrix Composite by Using Hot Press)

  • 박동성;이준희;이규창;박영철
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1223-1231
    • /
    • 2002
  • Al alloy matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by hot pressing to investigate microstructures and mechanical properties. The analysis of SEM and EDS showed that the composites have shown good interface bonding. The stress-strain behavior of the composites was evaluated at temperatures between 363K and room temperature as a function of prestrain, and it showed that the yield stress at 363K was higher than that of the room temperature. Especially, the yield stress of this composite increases with increasing the amount of prestrain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. Microstructural observation has revealed that interfacial reactions occur between the matrix and fiber, creating two intermetallic layers.

二相스테인리스鋼의 X線에 의한 巨視的.微視的 應力에 關한 硏究 (The X-Ray Study on Macrostress and Microstress for Two-Phase Stainless Steel)

  • 오세욱;김득진
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.141-150
    • /
    • 1994
  • The residual stress is inevitably introduced into composites because of the mismatch of the coefficient of thermal expansion, and it is different in each phase. The X-ray technique can detect separately the stress in each phase, so will wield useful information for analyzing the toughening mechanisms of composites. In order to apply the law of mixture to alloy steels with composite microstructures, two phase stainless steel, consisted of ferrite (.alpha.-Fe) and austenite (.gamma.-Fe) structures, was selected. The tensile elastic deformation was loaded, and then the X-ray diffraction technique was used to measure the X-ray elastic constants, the X-ray stress constants and the phase stresses. The law of mixture was investigated and the separation of macrostress and microstress was carried out. The phase stresses (the residual stresses of phase) in each phase, which were measured by X-ray technique, was directly proportional to the applied stress. The macrostress calculated from the phase stresses by using the law of mixture was nearly equal to the applied stress.

  • PDF

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Residual stresses measurement in the butt joint welded metals using FSW and TIG methods

  • Taheri-Behrooz, Fathollah;Aliha, Mohammad R.M.;Maroofi, Mahmood;Hadizadeh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.759-766
    • /
    • 2018
  • Friction Stir Welding (FSW) is a solid-state process, where the objects are joined together without reaching their melting point. It has been shown that this method is a suitable way to join dissimilar aluminium alloys. The current article employed hole drilling technique to measure the residual stress distribution experimentally in different zones of dissimilar aluminium alloys AA6061-T6 and AA7075-T6 Butt welded using FSW. Results are compared with those of similar AA6061-T6 plates joined using a conventional fusion welding method called tungsten inert gas (TIG). Also, the evolution of the residual stresses in the thickness direction was investigated, and it was found that the maximum residual stresses are below the yield strength of the material in the shoulder region. It was also revealed that the longitudinal residual stresses in the joint were much larger than the transverse residual stresses. Meanwhile, Vickers micro hardness measurements were performed in the cross-section of the samples. The largest hardness values were observed in the stir zone (SZ) adjacent to the advancing side whereas low hardness values were measured at the HAZ of both alloys and the SZ adjacent to the retreating side.

초음파 C-스캔 탐상을 이용한 경량 압전세라믹 복합재료 작동기의 피로거동과 계면변화의 관계 연구 (Experimental Evaluation of Fatigue Behavior and Interlaminar Phase in the Lightweight Piezoelectric Ceramic Composite Actuator Using the Ultrasonic C-scan Inspection)

  • 김철웅;남인창;윤광준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1332-1336
    • /
    • 2005
  • It could make the LIghtweight Piezoelectric Composite Actuator (LIPCA) damageable by the cyclic large deformation. If the progressive microvoid coalescence of LIPCA interlaminar took place, the decrease of the stiffness and the weakness of stress transmission and fiber bridging effect would make the fatigue characteristics worse suddenly. Therefore, it is required to study the variation of fatigue behavior and interlaminar condition in LIPCA under resonant frequencies. These studies such as the changeable fatigue phase and interlaminar behavior of LIPCA affected by the resonant frequencies should be carried out due to the strong anisotropy of CFRP layer. Hence, these studies are as follows. 1) The residual stresses distribution of interlaminar in LIPCA using the Classical Lamination Theory (CLT). 2) Comparative analysis of interlaminar behavior for the intact LIPCA versus LIPCA containing an artificial delamination during resonant frequency.

  • PDF

음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가 (Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission)

  • 강문필;이준현
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.381-389
    • /
    • 2000
  • 금속기지 복합재료의 미시적 파손기구는 작용하중의 방향, 재료의 열처리 상태, 기지재 및 강화재의 특성, 섬유체적률 등 여러 인자의 영향을 받는다. 이중 특히 재료의 열처리는 금속기지 복합재료의 기계적 특성을 지배하는 주요한 인자인 강화섬유와 기지재 사이의 계면특성에 큰 영향을 준다. 강화섬유와 기지재는 매우 큰 열팽창계수 차이를 가지기 때문에 금속기지 복합재료의 제조과정에 있어서 급격한 온도강하가 있을 경우에는 강화섬유와 기지재 사이의 계면에서는 잔류응력이 형성되며 이 때 발생한 잔류응력은 금속복합재료의 파손기구는 물론 기지재와 강화섬유 사이의 계면전단강도에도 중대한 영향을 미칠 수도 있다. 따라서 금속복합재료에 있어서 기지재와 강화재 사이의 계면전단강도에 대한 잔류응력의 영향을 평가하는 것은 금속복합재료의 실질적인 응용측면에서는 매우 중요한 과제라 할 수 있다. 복합재료에 있어서의 음향방출 기법과 SFC시험법을 동시에 이용하면 기지재와 강화재의 균열 및 기지재와 강화재 사이의 계면분리현상에 의한 미시적 파손기구를 명확하게 분리, 관찰할 수 있는 크나큰 이점이 있다. 따라서 된 연구에서는 음향방출기법과 SFC시험법을 이용하여 금속복합재료의 열처리 효과에 따른 미시적 파손기구 및 계면전판강도 변화특성을 체계적으로 연구, 고찰하였다.

  • PDF

고온용 복합재료의 크립 거동에 있어서 구성요소의 영향에 대한 연구 (A Study on the Influence of its Constituents on the Creep Behavior of High Temperature Composite Materials)

  • 박용환
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.45-53
    • /
    • 1998
  • A method to predict the creep behavior of fiber-reinforced ceramic composites at high temperatures was suggested based on finite element modeling using constituent creep equations of fiber and matrix and showed good agreement with the experimental results. The effects of matrix creep behavior, fiber volume fraction, and residual stresses on the composite creep behavior were also investigated. The results showed that the primary behavior of composites was greatly affected by that of matrix but post-primary behavior was governed by fiber creep characteristics. The increase of fiber volume fraction from 15 vol% to 30 vol% caused the 50% and 40% decrease of steady-state creep rates and total creep strains at $1200^{\circ}C$, 180MPa, respectively. Feasible compressive residual stresses in the matrix caused by different thermal expansion coefficients between the fiber and the matrix could significantly reduce total creep strains of the composite. The creep deformation mechanism in the fiber-reinforced ceramic composites could be explained by the stress transfer and redistribution in the fiber and matrix due to different creep characteristics of its constituents.

  • PDF

Fabrication and AE Characteristics of TiNi/ A16061 Shape Memory Alloy Composite

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.453-459
    • /
    • 2004
  • TiNi/ Al6061 shape memory alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which under-went pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic Emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/ Al6061 SMA composite.

복합재 평판 내부에 삽입된 광섬유 브래그 격자 센서의 삽입안전성과 신호 특성에 관한 연구 (The Embedding Reliability and The Spectrum Characteristic of Fiber Bragg Grating Sensor Embedded into Composite Laminates)

  • 이정률;류치영;강현규;김대현;구본용;강동훈;홍창선;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.238-244
    • /
    • 2000
  • FBGs have been extensively used as strain sensors or temperature sensors in a variety of applications related to composites because of embedding ability, small size and multiplexing capability. We inspected embedding environments inside composites with optical fiber by microscope analysis and birefringence characteristics of FBG embedded into textile composite laminate by cure monitoring using a high power WSFL. The cure monitoring of the cases with the striped FBG and the recoated FBG provided comprehensive understandings about the birefringence effect induced by the transverse stress. And these results allowed to consider a recoating method as an important tool to relieve birefringence.

  • PDF

형상 기억 합금을 이용한 Al기 복합재료 개발 (Development of AI Matrix Composite using Shape Memory Alloy)

  • 정태헌;이동주;김홍건
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.53-62
    • /
    • 1998
  • A simple analytical and finite element(FE) models are used to study the tensile properties of Al matrix composite with continuous TiNi fibers. The effects of residual stresses caused by the shape momory effects have been compared for various mechanical behaviors as a function of fiber volume fraction and degree of pre-strain and fiber configurations. It is found that both the back stress in the Al matrix induced by stiffness of TiNi fibers and the compressive stress in the matrix are caused of the strengthening mechanisms. Both theoretical and analytical results show quite good agreement and are closed to the experimental data except in high volume content.

  • PDF