• 제목/요약/키워드: Composite Residual Stress

검색결과 234건 처리시간 0.032초

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Evaluation Method of Adhesive Fracture Toughness Based on Double Cantilever Beam (DCB) Tests Including Residual Thermal Stresses

  • Yokozeki, Tomohiro;Ogasawara, Toshio
    • Advanced Composite Materials
    • /
    • 제17권3호
    • /
    • pp.301-317
    • /
    • 2008
  • The energy release rate associated with crack growth in adhesive double cantilever beam (DCB) specimens, including the effect of residual stresses, was formulated using beam theory. Because of the rotation of the asymmetric arms in the adhesive DCB specimens due to temperature change, it is necessary to correct the evaluated fracture toughness of the DCB specimens, specifically in the case of a large temperature change. This study shows that the difference between the true toughness and an apparent toughness due to the consequence of ignoring residual stresses can be calculated for a given specimen geometry and thermo-mechanical properties (e.g. coefficient of thermal expansion). The calculated difference in the energy release rates based on the present correction method is compared with that from FEM in order to verify the present correction method. The residual stress effects on the evaluation of the adhesive fracture toughness are discussed.

Electro-Micromechanical 시험법을 이용한 탄소섬유 강화 Epoxyacrylate 복합재료의 UV 및 열경화에 따른 비파괴적 손상 감지능 및 경화 Monitoring (Nondestructive Damage Sensing and Cure Monitoring of Carbon Fiber/Epoxyacrylate Composite with UV and Thermal Curing using Electro-Micromechanical Technique)

  • Kong, Jin-Woo;Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.261-264
    • /
    • 2002
  • Interfacial evaluation, damage sensing and cure monitoring of single carbon fiber/thermosetting composite with different curing processes was investigated using electro-micromechanical test. After curing, residual stress was monitored by measurement of electrical resistance (ER) and then it was compared to correlate with various curing processes. In thermal curing, curing shrinkage appeared significantly by matrix shrinkage and residual stress due to the difference in thermal expansion coefficient (TEC). The change in electrical resistance (ΔR) on thermal curing was higher than that on ultraviolet (UV) curing. For thermal curing, apparent modulus was the highest and reaching time until same strain was faster. So far thermal curing shows strong durability on the IFSS after boiling test.

  • PDF

금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우) (A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution))

  • 이준현;손봉진
    • 비파괴검사학회지
    • /
    • 제17권2호
    • /
    • pp.89-99
    • /
    • 1997
  • 단섬유강화금속복합재료는 최근 항공기, 자동차산업에 있어서 관심의 대상이 되고 있는 재료중의 하나이나 재료의 제조 및 성형중에 재료내의 기지재 및 강화재의 열팽창계수의 차이로 인해 재료 내부에 발생되는 열적잔류응력으로 인한 재료 특성의 변화로 실제적인 재료 적용상에 많은 문제점들이 보고되고 있다. 이와 같은 금속복합재료의 잔류응력의 평가에는 몇가지 비파괴적 방법이 적용되고 있으나 그 측정에 많은 어려움이 보고되고 있다. 따라서 금속복합재료의 보다 실제적인 응용을 위하여는 이와 같은 열적잔류응력을 평가하기 위한 이론적모델의 확립이 요구된다. 본 연구에 있어서는 비방향성을 가진 강화재가 2차원 평면 상태로 기지재내에 존재하는 단섬유강화금속복합재료에 있어서 재료에 균일한 온도 변화가 주어질 때 기지재와 강화재의 열팽창계수의 차로 인해 재료 내부에 발생하는 열적잔류응력을 평가, 예측하기 위한 이론적 탄성 모델을 확립하고자 한다. 본 연구에서 해석하고자 하는 이론 모델은 Eshelby의 등가 개재물 방법을 토대로 하고 있으며 과거 제안되고 있는 이론모델을 포함하는 보다 일반성을 가지는 해석 모델로서, 이 해석 모델을 이용하여 열적잔류응력에 미치는 강화재의 체적률, 종횡비, 분포 상태, 분포 cut-off 각도들에 대한 각 인자의 영향을 검토하였다. 그 결과 강화재의 체적률, 종횡비, cut-off 각도들이 강화재의 분포 상태보다도 금속복합재료의 열적잔류응력에 미치는 영향이 현저함을 알 수 있었다.

  • PDF

불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구 (A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

SiC 휘스커강화 금속복합재료와 지르코니아 접합체의 잔류응력 해석에 관한 연구 (A Study on Residual Stress of SiC Whisker Reiforced AI Alloy/$ZrO_2$ Joints)

  • 주재황;박명균
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.18-26
    • /
    • 1996
  • A two dimensional thermo elasto-plastic finite element stress analysis was performed to study residual stress distributions in AI composites reinforced by SiC whisker and $ZrO_2$ ceramic joints. The influences on the residual stress distributions due to the difference of the reinforcement volume fraction and interlayer material property were investigated. Specifically, stress distributions between AI interlayer material property were investigated. Specifically, stress distributions between AI interlayer and $ZrO_2$ ceramic and between the AI interlayer and AI composite were computationally analzed.

  • PDF

열처리시 발생되는 잔류응력이 금속복합체에 미치는 영향에 관한 실험 및 수치해석적 연구 (An Experimental and Numerical Study on the Thermally Induced Residual Stress Effect in Metal Matrix Composites)

    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.108-117
    • /
    • 1997
  • A continuum analysis has been performed for the application to the thermo-elasto-plastic behavior in a discontinuous metal matrix composite. an FEM (Finite Element Method) analysis was implemented to obtain the internal field quantities of composite as well as overall composite behavior and an experiment was demonstrated to compare with the numerical simulation . As the procedure, a reasonably optimized FE mesh generation, the appropriate imposition of boundary condition , and the relevant post processing such as elastoplastic thermomchanical analysis were taken into account. For the numerical illustration, an aligned axisymmetric single fiber model with temperature dependent material properties and precipitation hardening effect has been employed to assess field quantities. It was found that the residual stresses are induced substantially by the temperature drop during the thermal treatment and that the FEM results of the vertically and horizontally constrained model give a good agreement with experimental data.with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

Residual stress of cold-formed thick-walled steel rectangular hollow sections

  • Zhang, Xingzhao;Liu, Su;Zhao, Mingshan;Chiew, Sing-Ping
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.837-853
    • /
    • 2016
  • This paper presents the experimental and numerical study on the distribution of transverse and longitudinal residual stresses in cold-formed thick-walled structural steel rectangular hollow sections manufactured by indirect technique. Hole-drilling method is employed to measure the magnitude of the transverse and longitudinal surface residual stress distribution, and the effects of the residual stresses are evaluated qualitatively by sectioning method. It is shown that compared to normal cold-formed thin-walled structural hollow sections (SHS), the cold-formed thick-walled SHS has similar level of residual stress in the flat area but higher residual stresses in the corner and welding areas. Both the transverse and longitudinal residual stresses tend to open the section. In order to predict the surface residual stresses in the corners of the cold-formed thick-walled SHS, an analytical model is developed. 2D finite element simulation of the cold bending process is conducted to validate the analytical approach. It is shown that in analyzing bending for thick-walled sections, shifting of neutral axis must be considered, since it would lead to nonlinear and non-symmetrical distribution of stresses through the thickness. This phenomenon leads to the fact that cold-formed thick-walled SHSs has different distribution and magnitude of the residual stresses from the cold-formed thin-walled SHSs.

플라즈마 용사된 알루미나-지르코니아 복합체의 고온 마모.마찰 거동 (High Temperature Wear Behavior of Plasma-Sprayed Zirconia-Alumina Composite Coatings)

  • 김장엽;임대순;안효석
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.33-38
    • /
    • 1996
  • High temperature wear behaviors of plasma-sprayed ZrO$_{2}$-$Y_{2}O_{3}$ composite coatings were investigated for high temperature wear resistance applications. The composite powders containing 20, 50, 80 vol% of alumina for plasma spray were made by spray drying method. Wear tests with composite coated specimens were performed at temperature ranges from room temperature to 800$^{\circ}$C. Wear tests were also carried out with heat treated specimens at room temperature. The microstructural change of coatings and the worn surface were examined by SEM and XRD. Sharp increase of wear loss at high temperature wear test was observed in specimens containing 50 and 80 vol% alumina. Similar trend was observed in the heat treated coatings. The measured residual stress was increased with increased alumina contents and heat treating temperatures. Residual stress induced during heat treatment appeared to be responsible to the observed harmful effect of alumina additions on the high temperature wear.

Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams

  • Han, Qing-Hua;Wang, Yi-Hong;Xu, Jie;Xing, Ying
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.353-368
    • /
    • 2016
  • This paper extends our recent work on the fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete (RRFC) composite beams. A series of 16 fatigue push-out tests were conducted using a hydraulic servo testing machine. Three different recycled tyre rubber contents of concrete, 0%, 5% and 10%, were adopted as main variable parameters. Stress amplitudes and the diameters of studs were also taken into consideration in the tests. The results show that the fatigue lives of studs in 5% and 10% RRFC were 1.6 and 2.0 times greater of those in normal concrete, respectively. At the same time, the ultimate residual slips' values of stud increased in RRFC to highlight its better ductility. The average ultimate residual slip value of the studs was found to be equal to a quarter of studs' diameter. It had also been proved that stress amplitude was inversely proportional to the fatigue life of studs. Moreover, the fatigue lives of studs with large diameter were slightly shorter than those of smaller ones and using larger ones had the risk of tearing off the base metal. Finally, the comparison between test results and three national codes was discussed.