• 제목/요약/키워드: Composite Residual Stress

검색결과 234건 처리시간 0.032초

섬유강화금속적층판(FRML)의 열응력 해석 (Thermal Residual Stress Analysis of Fiber Reinforced Metal Laminate)

  • 김위대;양승희
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.61-64
    • /
    • 2002
  • Fiber reinforced metal laminate(FRML) consists of alternations layers of metal and fiber reinforced composite. The difference in the coefficients of thermal expansion between metal and composite layer produces remarkable amount of thermal residual stresses between layers. Generally, FRML shows a tensile stress in metal layers, a compressive stress in composite layers after curing. In this study, the thermal residual stresses of several types of FRML are investigated to get the best combination of metal and composite which can reduce the thermal residual stresses. The residual stress level is compared with the strength of each layers to explain the fracture mechanism of FRML.

  • PDF

Thermo-Viscoelastic Residual Stress Analysis of Metal Liner-Inserted Composite Cylinders

  • Hwang, Ho-Yon;Kim, Yeong-Kook;Kim, Cheol;Kwon, Young-Doo;Park, Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.171-180
    • /
    • 2003
  • One of the most significant problems in the processing of composite materials is residual stress. The high residual stress may cause cracking in the matrix without external loads and degrade the integrity of composite structures. In this study, thermo-viscoelastic residual stresses occurred in an aluminum liner-inserted polymer composite cylinder are investigated. This type of the structure is used for rocket fuselage due to the convenience to attach payloads and equipment to the metal liner by machining. The time and degree of cure dependent thermo-viscoelastic constitutive equations are developed and coupled with a thermo-chemical process model. These equations are solved with the finite element method to predict the residual stresses in the composite cylinder and also in the interface between the liner and the composite during cure.

플라즈마 용사법에 의한 지르코니아 코팅에서의 잔류응력에 대한 연구 (Residual stresses on plasma sprayed zirconia coatings)

  • 류지호;강춘식
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.46-55
    • /
    • 1989
  • Zirconia coatings are performed by the plasma spraying on the substrate of Al-Si alloy. In case of plasma sprayed ceramic coatings, it is important to control properly residual stress occurred during cooling process. Residual stress in coating layer varies with sprayed conditions and is influenced greatly by the coating layer thickness. Surface residual stress due to coating layer thickness is measured by X-ray diffraction method and the residual stress in coating layer is estimated by the deflection of coating layer when the restraint force in substrate was removed. When zirconia was coated on the substrate, tensile residual stress remains on zirconia coated surface layer. The tensile stress is increased to 0.35mm thickness and after 0.45mm thickness it is decreased abrouptly. A thick bond and composite coating reduce the zirconia surface stress and composite coating controls effectively the thick zirconia surface stress.

  • PDF

복합재 패춰의 열잔류응력 해석 (Analysis of Thermal Residual Stress in Composite Patches)

  • 김위대;김난호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.63-66
    • /
    • 2000
  • This research addresses study on thermal residual stress of a composite patch repair of the edge cracked aluminium panel of aging aircraft. Composite patch repair is an efficient and economical technique to improve the damage tolerance of cracked metallic structures. These are thermal residual stresses due to the mismatch of coefficient of thermal expansion, and these are affected by the curing cycle of patch specimen. In this study, three curing cycles were selected for F.E. analysis. This study features the effect on composite patch and aluminum by thermal residual stress during crack propagation in aluminum plate.

  • PDF

고온에서의 형상기억복합재료의 비파괴평가에 관한 연구 (A Study on Nondestructive Evaluation of Share Memory Alloy Composite at High Temperature)

  • 강동현;이진경;박영철;구후택;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.186-191
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 shape memory alloy(SMA) composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation and volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 SMA composite. In addition, two dimensional AE source location technique was applied to inspect the crack initiation and propagation in composite.

  • PDF

Prediction of Dimensional Instability Resulting from Layer Removal of an Internally Stressed Orthotropic Composite Cylinder

  • Shin, Shang-Hyon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.757-761
    • /
    • 2002
  • When a layer of cylindrical composite component containing an axisymmetric residual stress state is removed from the inner or outer surface, the dimension of the remaining material changes to balance internal forces. Therefore, in order to machine cylindrical composite components within tolerances, it is important to know dimensional changes caused by residual stress redistribution in the body. In this study, analytical solutions for dimensional changes and the redistribution of residual stresses due to the layer removal from a residually stressed cylindrically orthotropic cylinder were developed. The cylinder was assumed to have axisymmetric radial, tangential and axial residual stresses. The result of this study is useful in cases where the initial residual stress distribution in the component has been measured by a non-destructive technique such as neutron diffraction with no information on the effect of layer removal operation on the dimensional changes.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite using Acoustic Emission Technique)

  • 이진경;박영철;구후택;박동성;이규창
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.275-282
    • /
    • 2002
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 고온파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite at High Temperature using Acoustic Emission Technique)

  • 이진경;박영철;강동현;박동성;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.72-77
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

  • PDF

TiNi/Al 형상기억 지적복합재료의 기계적 특성 및 강화기구 (Material Properties and Strengthening Mechanism in Shape Memory TiNi Fiber Reinforced Al Matrix composite)

  • 박영철;윤두표;이규창
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.405-413
    • /
    • 1997
  • In the present paper, it is attempted to reconfirm the "Intelligent" material properties using both the sintered TiNi/Al(1100) matrix composite made by powder metallurgy method and the squeeze-casted TiNi/Al6061 specimens. A metal matrix composite is, its fault has been considered to deteriorate a strength of composite by heating residual stress of the matrix. Therefore, it is necessary to remove a tensile residual stress, to produce the strength of a composite better. On the contrary, if compressive residual stress happens in matrix of composite in place of tensile residual stress, it will make the strength of composite better. So that, this paper introduce the development of a high strength of composite, by using compressive residual stress well, on the study. By using these specimens, shape memory strengthening effects in tensile strength and fatigue crack propagation above inverse transformation temperature of TiNi fiber were investigated. We occurs the prestrain and volume fraction for to discuss the effects of a composite strength. Moreover, by SEM observation, the effect of the residual stress at the interface between Al matrix and TiNi fiber and some brittle precipitation layers such as inter metallic compounds on fracture mechanisms was discussed metallurgically.urgically.

형상기억합금 작동기를 이용한 복합재 평판의 형상변형 (Morphing of Composite Plate Using SMA Actuator)

  • 김상헌;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF