• Title/Summary/Keyword: Composite Mold Manufacturing

Search Result 64, Processing Time 0.019 seconds

A Study on the Resin Flow through Fibrous Preforms in the Resin Transfer Molding Process (수지이동 성형공정에서 섬유직조망내의 수지유동에 관한 연구)

  • 김성우;이종훈;이미혜;남재도;이기준
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.70-81
    • /
    • 1999
  • Resin transfer molding(RTM) as a composite manufacturing process is currently of great interest in the aerospace industry requiring high performance composite parts. In this study, an analysis of mold filling in the RTM process was carried out by numerical simulation using finite element/control volume technique. Experimental work for the visualization of resin flow through fibrous preform was also conducted in order to quantitatively measure the permeabilities of the fiber mats and to evaluate the validity of the developed numerical code. The different types of fiber mats and silicon oils were selected as reinforcements and resin materials, respectively. The effects of fibrous preform structure, mold geometry, and preplaced insert on the flow front patterns during mold filling were examined by integrating the model predictions and experimental results. The flow fronts predicted by numerical simulation were in good agreement with those observed experimentally. However, according to the regions of the mold, some deviations between predicted and observed flow fronts could be found because of non-uniform fiber volume fraction. Weldline locations for the resin flow through round insert preplaced in the mold could be qualitatively deduced based on predicted flow fronts.

  • PDF

A Study of Mold Technology for Manufacturing of CFRTP Parts (CFRTP 부품제조를 위한 금형 및 성형 기술에 대한 연구)

  • Jung, Eui-Chul;Kim, Jong-Sun;Son, Jung-Eon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.25-28
    • /
    • 2017
  • The production of carbon fiber reinforced thermoplastics(CFRTP) parts using an injection/compression molding process that differs from the conventionally used fabrication methods was investigated Before the application of composite molding in the injection/compression molding process, a simple compression molding experiment was performed using a hydraulic press machine to determine the characteristics of resin impregnation and to obtain a basic physical property data for the CFRTP. Based on these results, injection/compression molded specimens were manufactured and an additional insert/over molding process was applied to improve the impregnation rate of the molded specimens. The results demonstrated that the tensile strength of the molded parts using the faster injection/compression process was similar to that of a hydraulic press molded product.

A Study on Structural Design of Natural Fiber Composites Automobile Body Panel Considering Impact Load (충돌 하중을 고려한 친환경 자연섬유 복합재 적용 자동차 차체 패널의 구조 설계 연구)

  • Park, Kilsu;Kong, Changduk;Park, Hyunbum
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.291-296
    • /
    • 2015
  • In this study, structural design and analysis of the automobile bonnet is performed. The flax/vinly ester composite material is applied for structural design. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite bonnet. The VARTML is a manufacturing process that the resin is injected into the fly layered-up fibers enclosed by a rigid mold tool under vacuum. A series of flax/vinyl ester composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of the automobile bonnet is performed.

Structural Design of Light Weight Natural Fiber Composites for Next Generation Automobile Bonnet (차세대 자동차 본넷용 친환경 경량화 자연섬유 복합재 구조 설계)

  • Park, Kilsu;Kong, Changduk;Park, Hyunbum
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this study, structural design and analysis of the automobile bonnet is performed. The flax/vinly ester composite material is applied for structural design. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite bonnet. The VARTML is a manufacturing process that the resin is injected into the fly layered-up fibers enclosed by a rigid mold tool under vacuum. A series of flax/vinyl ester composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of the automobile bonnet is performed.

Optimal Manufacturing Conditions of Glass Fiber Reinforced PET Matrix Composites by Rapid Press Consolidation Technique (고속압밀법에 의해 제작된 유리섬유강화 PET 기지 복합재료의 최적제작조건)

  • Lee, Dong-Ju;Sin, Ik-Jae;Kim, Hong-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.813-821
    • /
    • 2002
  • Glass fiber reinforced PET matrix composite was manufactured by rapid press consolidation technique as functions of temperature, pressure and time in pre-heating, consolidation and solidification stages. The optimal manufacturing conditions for this composite were discussed based on the void content, tensile, interlaminar shear and impact properties. In addition, the levels of crystallinity with various manufacturing conditions were measured using differential scanning calorimetry to investigate the mechanical properties of this composite material as a function of crystallinity. Among many processing parameters, the mold temperature and the cooling rate after forming were found to be the most critical factors in determining the level of crystallinity and mechanical properties. The level of crystallinity affects the tensile properties to some degree. However, impact properties are affected much more. It also affects the degree of ductility, which determines the impact energy of this material.

Residual Deformation Analysis of Composite by 3-D Viscoelastic Model Considering Mold Effect (3-D 점탄성 모델을 이용한 복합재 성형후 잔류변형해석 및 몰드 효과 연구)

  • Lee, Hong-Jun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • The carbon fiber reinforced plastic manufacturing process has a problem in that a dimensional error occurs due to thermal deformation such as residual stress, spring-in, and warpage. The main causes of thermal deformation are various, including the shape of the product, the chemical shrinkage, thermal expansion of the resin, and the mold effect according to the material and surface condition of the mold. In this study, a viscoelastic model was applied to the plate model to predict the thermal deformation. The effects of chemical shrinkage and thermal expansion of the resin, which are the main causes of thermal deformation, were analyzed, and the analysis technique of the 3-D viscoelastic model with and without mold was also studied. Then, the L-shaped mold effect was analyzed using the verified 3D viscoelastic model analysis technique. The results show that different residual deformation occurs depending on the surface condition even when the same mold is used.

Fabrication and Evaluation of Composite Panel with Hat-shaped Stiffeners (모자(Hat)형 보강재를 가진 복합재 패널의 제작과 평가)

  • Kim, Geon-Hui;Lim, Do-Wan;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Tae-Joo;Song, Min-Hwan;Shin, Sang-Joon
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.31-39
    • /
    • 2010
  • In this paper, composite panels with hat-shaped stiffeners were made using the co-curing, co-bonding and secondary bonding methods. Co-curing is a manufacturing method in which the hat part and the plate are cured simultaneously in a manner that is more cost effective than other methods. Co-bonding is a method in which the stacked prepregs are cured with other cured parts, and secondary bonding is a method in which cured parts are bonded together using an adhesive. A rubber mold was manufactured for co-curing of composite panel with hat-shaped stiffeners, and finite element analyses were done to evaluate the expanding pressure of the rubber mold consistent with the curing temperature. The manufactured panels were also evaluated using a 3-D measurement tester and an ultrasonic tester. Pull-off tests were performed to evaluate their mechanical properties.

Design and Manufacture of Composite Machine Tool Structures for High Speed Milling Machines (고속 밀링 머신용 복합재료 이송부의 설계와 제작)

  • 서정도;김학성;김종민;최진경;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.223-226
    • /
    • 2002
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. However, the productivity of mold manufacturing has not increased significantly because CNC milling machines have massive slides, which do not allow rapid acceleration and deceleration during the frequent starts/stops encountered in machining molds and dies. This paper presents the use of composites for these slides to overcome this limitation. The vertical and horizontal slides of a large CNC machine were constructed by bonding high-modulus carbon-fiber epoxy composite sandwiches to welded steel structures using adhesives. These composite structures reduced the weight of the vertical and horizontal slides by 34% and 26%, respectively, and increased damping by 1.5 to 5.7 times without sacrificing the stiffness. Without much tuning, this machine had a positional accuracy of $\pm5\mu\textrm{m}$ per 300 m of the slide displacement.

  • PDF

Development of Injection Moulding Method of Sabot using Polyetherimide Composite Material (PEI계 복합 재료를 이용한 탄자 운반체의 사출 성형 기술 개발에 관한 연구)

  • 정태형;이범재;하영욱;이성계
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.269-274
    • /
    • 2001
  • This research covers the development of new technique for composite injection molding of high stiffness Sabot. An analysis of polymer resin is performed by means of making test specimen mold and doing test with accordance of ASTM test guidelines. Structural analysis and simulation of injection molding process are carried out in order not only to estimate but also to predict the characteristics of molding stresses what both product and structure of mold may have. For structural analysis software, Moldflow and LS-dyna are used and universal test machine is utilized for evaluating performance of sabot. Cases of adopting this material to sabot are not announced yet in domestic academic world. In addition to that, materials for polymer-metal mixed injection molding are imported on the whole due to deficient level of domestic technology. Therefore, this new developed injection molding technique using PEI material can make it available to ensure the technology of making mold, injection and design. Finally, this technique may be applicable to another sabot having different radius of warheads from now on.

  • PDF

Simulated Annealing for Overcoming Data Imbalance in Mold Injection Process (사출성형공정에서 데이터의 불균형 해소를 위한 담금질모사)

  • Dongju Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.233-239
    • /
    • 2022
  • The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.