• Title/Summary/Keyword: Composite Models

Search Result 1,216, Processing Time 0.026 seconds

Study on Settlement Calculation of the Long-Short Pile Composite Foundation

  • XU, Xin;Kwag, Yunehyeong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.13-18
    • /
    • 2013
  • As a new foundation treatment technology, long-short pile composite's design theory is still in primary phase, and there are no explicit settlement calculation methods in active codes. So it is necessary to study the working mechanism and the methods of settlement calculation. In this paper, the mechanics of long-short pile composite foundation are fully discussed. Meanwhile, based on the shear deformation method, the Mylonakis & Gazetas models about mutual action between two piles and the one between pile and soil are introduced, Considering the performance of cushion, the flexible factors of mutual actions are provided. Then the settlement calculation of long-short pile composite foundation which can consider the mutual actions between pile, soil and cap is deduced, and the correlated program is also developed. Finally, an engineering example is discussed with the method. A comparison shows that calculated results and measured data from a field test pile are in a good agreement, indicating that the presented approach is feasible and applicable in engineering practice.

Non-linear analysis of composite steel-concrete beams with incomplete interaction

  • Cas, Bojan;Bratina, Sebastjan;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.489-507
    • /
    • 2004
  • The flexibility of the connection between steel and concrete largely influences the global behaviour of the composite beam. Therefore the way the connection is modelled is the key issue in its structural analysis. Here we present a new strain-based finite element formulation in which we consider non-linear material and contact models. The computational efficiency and accuracy of the formulation is proved with the comparison of our numerical results with the experimental results of Abdel Aziz (1986) obtained in a full-scale laboratory test. The shear connectors are assumed to follow a non-linear load-slip relationship proposed by Ollgaard et al. (1971). We introduce the notion of the generalized slip, which offers a better physical interpretation of the behaviour of the contact and gives an additional material slip parameter. An excellent agreement of experimental and numerical results is obtained, using only a few finite elements. This demonstrates that the present numerical approach is appropriate for the evaluation of behaviour of planar composite beams and perfect for practical calculations.

Rapid prediction of long-term deflections in composite frames

  • Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.547-563
    • /
    • 2015
  • Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.

Experimental and Finite Element Analysis of Free Vibration Behaviour of Graphene Oxide Incorporated Carbon Fiber/Epoxy Composite

  • Adak, Nitai Chandra;Uke, Kamalkishor Janardhanji;Kuila, Tapas;Samanta, Pranab;Lee, Joong Hee
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.311-316
    • /
    • 2018
  • In the present study, the effect of GO in damping capacity of CF/epoxy laminates was studied via free vibration analysis. The composite laminates were manufactured by using vacuum assisted resin transfer molding technique. The damping properties of the prepared hybrid composites were determined in terms of natural frequency and damping ratio in free vibration test. The foremost aspire of this investigation was to compare the vibration properties i.e. natural frequency and modal damping of the prepared composites with the numerical results. The numerical study was carried out via FEA using $ANSYS^{TM}$ workbench software. The parametric study of the numerical models was also studied considering the beam free length and the beam thickness. It was found that the incorporation of GO enhanced the damping capacity of the composite and the variation of natural frequencies in mode1varied by 2-5% compared to the experimental study.

Nonlinear Behavior of Composite Modular System's Joints (합성 모듈러 시스템 접합부의 비선형 거동 평가)

  • Choi, Young hoo;Lee, Jong il;Lee, Ho chan;Kim, Jin koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Nonlinear Transonic Flutter Analysis of a Composite Fin Considering Delamination Effect (층간분리 효과를 고려한 복합재 핀의 비선형 천음속 플러터 해석)

  • Gwang Young Lee;Ki-Ha Kim;Dong-Hyun Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.82-93
    • /
    • 2023
  • In this paper, nonlinear transonic flutter analyses of a composite missile fin considering the effect of delamination are conducted. An effective modal analysis methodology is adopted and verified with the experimental modal test data for laminated composite plates with delamination. Extended version of the in-house computational aeroelastic analysis program with the transonic small-disturbance (TSD) code is used in order to predict the flutter dynamic pressure of the delaminated composite fin models. In the subsonic, transonic, and supersonic flow regions, nonlinear time-domain flutter analyses are performed for various delamination conditions, and aeroelastic characteristics due to the delamination phenomena are examined in detail.

A diagnostic approach for concrete dam deformation monitoring

  • Hao Gu;Zihan Jiang;Meng Yang;Li Shi;Xi Lu;Wenhan Cao;Kun Zhou;Lei Tang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.701-711
    • /
    • 2023
  • In order to fully reflect variation characteristics of composite concrete dam health state, the monitoring data is applied to diagnose composite concrete dam health state. Composite concrete dam lesion development to wreckage is a precursor, and its health status can be judged. The monitoring data are generally non-linear and unsteady time series, which contain chaotic information that cannot be characterized. Thus, it could generate huge influence for the construction of monitoring models and the formulation of corresponding health diagnostic indicators. This multi-scale diagnosis process is from point to whole. Chaotic characteristics are often contained in the monitoring data. If chaotic characteristics could be extracted for reflecting concrete dam health state and the corresponding diagnostic indicators will be formulated, the theory and method of diagnosing concrete dam health state can be huge improved. Therefore, the chaotic characteristics of monitoring data are considered. And, the extracting method of the chaotic components is studied from monitoring data based on fuzzy dynamic cross-correlation factor method. Finally, a method is proposed for formulating composite concrete dam health state indicators. This method can effectively distinguish chaotic systems from deterministic systems and reflect the health state of concrete dam in service.

A Study on Headway Distribution Models of Rural Two Lane Roads (지방부 2차로도로의 차두시간 분포 모델에 관한 연구)

  • Moon, Jaepil;Kim, Dongnyong
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • PURPOSES : This study was done to model the headway distribution of rural two lane roads. METHODS : Time headway data for the various level of traffic volumes was measured in twelve sites. Based on the time headway data, existing seven mathematical models were evaluated and selected by comparing graphically the measured and theoretical distributions and conducting the Chi-square test. RESULTS : The results show that both the Schul model and Composite Model were the most appropriate models of the models. Based on the measured time-headway distributions, this study proposed a new headway distribution model by the shift of the Schul model. CONCLUSIONS : The shifted Schul model has the ability to describe time headway distirbutons for random, intermediate, and constant-headway states.

A study on vector modeling using Preisach and Stoner-Wholfarth Model (Preisach 모델과 Stoner-Wholfarth 모델을 결합한 벡터 모델링 기법에 관한 연구)

  • Lee, Jung-Woo;Park, Gwan-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.62-64
    • /
    • 1996
  • Two current approaches for modeling the vector magnetic hysteretic process are the vector Preisach models and those models based on a system of noninteracting pseudo-particles. The pseudo-particles are intended to mimic the average behavior of real media particles. The simplest switching mechanisms of pseudoparticles is the Stoner-Wholfarth model. The Preisach models are quite precise in specifying the experimental input to the models. The vector properties of the Preisach models are, however, inadequate. This is partly because of the questionable assumptions used in coupling the various vector hysteresis components. Also these models do not include reversible magnetization changes. Unlike Preisach counterpart, the Stoner-Wholfarth model is inherently vector in nature. This is because spatial distribution and switching mechanisms are imposed on the system of pseudo-particles, so they come closer to representing the physical reality. The lack of interaction between pseudo-particles exclude the usefulness of the Stoner-Wholfarth model for small fields when the medium is traversing minor loops. The present work is an attempt at combining the advantages of above two models into one composite model, including the effect of particle interaction.

  • PDF