• Title/Summary/Keyword: Composite Laminates

Search Result 644, Processing Time 0.024 seconds

Impact Monitoring of Composite Structures using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 충격 모니터링 기법 연구)

  • Jang, Byeong-Wook;Park, Sang-Oh;Lee, Yeon-Gwan;Kim, Chun-Gon;Park, Chan-Yik;Lee, Bong-Wan
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Low-velocity impact can cause various damages which are mostly hidden inside the laminates or occur in the opposite side. Thus, these damages cannot be easily detected by visual inspection or conventional NDT systems. And if they occurred between the scheduled NDT periods, the possibilities of extensive damages or structural failure can be higher. Due to these reasons, the built-in NDT systems such as real-time impact monitoring system are required in the near future. In this paper, we studied the impact monitoring system consist of impact location detection and damage assessment techniques for composite flat and stiffened panel. In order to acquire the impact-induced acoustic signals, four multiplexed FBG sensors and high-speed FBG interrogator were used. And for development of the impact and damage occurrence detections, the neural networks and wavelet transforms were adopted. Finally, these algorithms were embodied using MATLAB and LabVIEW software for the user-friendly interface.

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites (3D Textile 프리폼 제조 및 복합재료 기계적 특성 연구)

  • Jo, Kwang-Hoon;Klapper, Vinzenz;Kim, Hyeon-Woo;Lee, Jeong-Woon;Han, Joong-Won;Byun, Joon-Hyung;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • The aircraft composites wing parts are usually integrated with adhesive or fastener. These laminated composites have weak interlaminar strength, which can lead to delamination. In order to compensate the disadvantages of laminated composites, it is possible to improve the strength, durability, shock and fatigue resistance by reinforcing the fiber in the thickness direction. In addition, using a single structure near-net-shape saves the manufacturing time and the number of fasteners, thus can reduce the overall cost of the composite parts. In this study, compression test, tensile test and open-hole tensile test are carried out for three structural architecture of 3D (three-dimensional) textile preforms: orthogonal(ORT), layer-to-layer(LTL) and through-the-thickness(TTT) patterns. Among these, the orthogonal textile composite shows the highest Young's modulus and strength in tensile and compression. The notch sensitivity of the orthogonal textile composite was the smallest as compared with UD (unidirectional) and 2D (two-dimensional) fabric laminates.

Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes (나노입자 코팅 CFRP의 모의 낙뢰 충격손상 후 압축시험에서의 음향방출 거동)

  • Shin, Jae-Ha;Kwon, Oh-Yang;Seo, Seong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10~40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

Effect to Material Strength Recovery of Stepped Patch Repair with Epoxy based Particle Reinforced GFRP Composites under Hygrothermal Environment (에폭시 기지 입자 강화 GFRP를 사용한 계단형 패치 보수법이 고온 고습 환경하에서 재료의 물성 회복에 미치는 영향)

  • Jung, Kyung-Seok;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.88-93
    • /
    • 2018
  • In this study, damaged composite laminates were repaired by a stepped patch repair method using halloysite nanotube(HNT) and milled carbon(MC) reinforced composite materials with different amount of the particles. And the mechanical and structural effects of the particles on the interface between the damaged and repair surfaces were analyzed. At this time, after exposing them to a harsh environment of high temperature and humidity for a long time, the recovery rate of the material properties relative to the material forming the damaged plate was compared. As a result, at $70^{\circ}C$ high temperature distilled water, the hygroscopicity of the HNT/GFRP composites was significantly different from that of the MC/GFRP composites. Especially, 0.5, 1 wt. % HNT was added, the moisture absorption rate was the lowest and this was the factor that contributed to the mechanical strength increase. On the other hand, MC showed a high hygroscopic resistance only with a small amount, and the strength was different according to the action direction of the load, and the addition amount was also different.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Applications of Cure Monitoring Techniques by Using Fiber Optic Strain Sensors to Autoclave, FW and Rm Molding Methods

  • Fukuda, Takehito;Kosaka, Tatsuro;Osaka, Katsuhiko
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.47-58
    • /
    • 2001
  • This paper describes applications of cure monitoring techniques by using embedded fiber optic strain sensors, which are extrinsic Fabry-Perot interoferometric (EFPI) and/or fiber Bra99 grating (FBG) sensors, to three kinds of molding methods of autoclave, FW and RTM molding methods. In these applications, internal strain of high-temperature curing resin was monitored by EFPI sensors. From theme experimental results, it was shown that strain caused by thermal shrink at cooling stage could be measured well. In addition, several specific matters to these molding methods were considered. As thor an autoclave molding of unidirectional FRP laminates, it was confirmed that off-axis strain of unidirectional FRP could be monitored by EFPI sensors. As for FW molding using room-temperature (RT) cured resin, it was found that the strain outputs from EFPI sensors represented curing shrinkage as well as thermal strain and the convergence meant finish of cure reaction. It was also shown that this curing shrinkage should be evaluated with consideration on logarithmic change in stiffness of matrix resin. As for a RTM melding, both EFPI and FBC sensors were employed to measure strain. The results showed that FBG sensors hale also good potential for strain monitoring at cooling stage, while the non-uniform thermal residual strain of textile affected the FBG spectrum after molding. This study has proven that embedded fiber optic strain sensors hale practical ability of cure monitoring of FRP. However, development of automatic installation methods of sensors remains as a problem to be solved for applications to practical products.

  • PDF

Nonlinear Analysis of Reinforced Concrete Beams Shear-Strengthened with Fiber Reinforced Polymer Composites (FRP로 전단보강된 철근콘크리트 보의 비선형 해석)

  • Kim, Sang-Woo;Hwang, Hyun-Bok;Lee, Bum-Sik;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.835-838
    • /
    • 2008
  • This study presents the nonlinear finite element analysis to predict the behavior of reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer laminates (FRP). In this paper, modeling concept for the FRP is introduced to enable the use of finite element methods for the shear analysis of RC beams shear-strengthened with FRP composites. The numerical techniques are used to represent the FRP composite, bond properties between the FRP and the concrete, and the RC beams. According to the proposed modeling methods, a finite element analysis is performed using a two-dimensional nonlinear finite element analysis program, VecTor2, based on the Disturbed Stress Field Model (DSFM). To verify the application of the DSFM for the prediction of the behavior of the shear-critical beams strengthened with FRP composites in shear, a detailed comparison between experimental and numerical results for the response of the RC beams is carried out.

  • PDF

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.

The Effect of Neglecting the Longitudinal Moment Terms in Analyzing Laminates with Increasing Aspect Ratio (적층판 해석시 형상비 증가에 따른 종방향 모멘트의 무시효과)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • Theories for advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the senior author. Most of the bidge and building slabs on girders have large aspect ratios For such cases frurther simplification is possible by neglecting the effect of the longitudinal moment terms(Mx) on the relevant partial differential equationsof equilibrium In this paper, the result of the study on the subject problem is presented.

  • PDF