• 제목/요약/키워드: Composite Index

검색결과 743건 처리시간 0.028초

Sustainable controlled low-strength material: Plastic properties and strength optimization

  • Mohd Azrizal, Fauzi;Mohd Fadzil, Arshad;Noorsuhada Md, Nor;Ezliana, Ghazali
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.393-407
    • /
    • 2022
  • Due to the enormous cement content, pozzolanic materials, and the use of different aggregates, sustainable controlled low-strength material (CLSM) has a higher material cost than conventional concrete and sustainable construction issues. However, by selecting appropriate materials and formulations, as well as cement and aggregate content, whitethorn costs can be reduced while having a positive environmental impact. This research explores the desire to optimize plastic properties and 28-day unconfined compressive strength (UCS) of CLSM containing powder content from unprocessed-fly ash (u-FA) and recycled fine aggregate (RFA). The mixtures' input parameters consist of water-to-cementitious material ratio (W/CM), fly ash-to-cementitious materials (FA/CM), and paste volume percentage (PV%), while flowability, bleeding, segregation index, and 28-day UCS were the desired responses. The central composite design (CCD) notion was used to produce twenty CLSM mixes and was experimentally validated using MATLAB by an Artificial Neural Network (ANN). Variance analysis (ANOVA) was used for the determination of statistical models. Results revealed that the plastic properties of CLSM improve with the FA/CM rise when the strength declines for 28 days-with an increase in FA/CM, the diameter of the flowability and bleeding decreased. Meanwhile, the u-FA's rise strengthens the CLSM's segregation resistance and raises its strength over 28 days. Using calcareous powder as a substitute for cement has a detrimental effect on bleeding, and 28-day UCS increases segregation resistance. The response surface method (RSM) can establish high correlations between responses and the constituent materials of sustainable CLSM, and the optimal values of variables can be measured to achieve the desired response properties.

핫멜트 프리프레그 공정용 난연성 비닐에스터 수지 필름의 무 스티렌 합성 (Styrene-free Synthesis of Flame-retardant Vinyl Ester Resin Films for Hot-melt Prepreg Process)

  • 강지선;김민지;허몽영;윤석일
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.412-418
    • /
    • 2022
  • 메타크릴산과의 에스터화 반응을 통해 브롬화 에폭시 수지와 일반 에폭시 수지의 혼합물로부터 난연성 비닐에스터 핫멜트 필름을 제조하였고 이를 이용하여 탄소섬유와 비닐에스터 복합 프리프레그를 제조하였다. 저점도 비스페놀-A와 고점도 브롬화 비스페놀-A 에폭시 전구체를 혼합하여 필름 생산에 적합한 VE 수지의 점도를 최적화하였다. 경화된 VE 수지의 브롬 함량 증가는 비 브롬화 VE에 비해 제한 산소 지수(LOI)(39%), 25℃에서의 저장 탄성률(2.4 GPa) 및 잔류 탄화물(16.1%) 값을 더 증가시켰다. 합성한 VE 프리프레그의 수동 레이업과 후속 경화로 인장 및 굴곡 강도가 우수한 CF 강화 복합재를 성공적으로 제작하였다. 본 연구 결과는 스티렌이 없는 친환경적인 VE 복합 재료 공정의 향후 산업화에 대한 높은 가능성을 보여준다.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동 (Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact)

  • 장재영;최낙삼
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.33-40
    • /
    • 2009
  • 유리섬유/에폭시 복합재료로 피막한 판유리의 표변파괴거동에 대한 섬유방향효과를 미소강구 충격실험을 통해 연구했다. 본 연구에서는 단순소다유리판(soda-lime glass plates), 일방향 유리섬유/에폭시박막 (glass/epoxy lamina ply)을 1층 및 2층 접착, 직교형 유리섬유/에폭시 박막 (2층)을 접착한 4종류의 시편을 사용하였다. 유리판 배면에 스트레인게이지를 부착하여 충격중의 최대 응력과 흡수파괴에너지를 측정하였다. 피막없는 판유리의 경우 충격속도 증가에 따라 링균열, 콘균열, 레이디얼 균열이 충격표면부에서 발생하였다. 복합재료 박막으로 피막한 결과, 소다유리판의 균열은 현저히 감소하였으며 섬유층과 판유리사이의 박리 및 소성변형영역의 방향은 섬유방향으로 진행했다. 최대응력과 흡수파괴에너지를 이용하여 구한 충격 표면파괴지수는 표면저항의 효과적인 평가지수로서 사용될 수 있었다.

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.

만성 요통 환자와 요통이 없는 건강한 대상자의 척추 뼈분절의 압통 역치 수준 비교와 만성 요통 환자에 통증 수준, 기능장애 및 심리사회적 수준 간에 상관성 (Comparison of the Pressure Pain Thresholds the Vertebral Segments Between Patients with Chronic Lower Back Pain and Healthy Individuals, and Correlation Between Pain, Dysfunction, and Psychological Status in Patients with Chronic Lower Back Pain)

  • 유진영;김선엽
    • 대한정형도수물리치료학회지
    • /
    • 제29권3호
    • /
    • pp.73-84
    • /
    • 2023
  • Background: This study aimed to compare pressure pain thresholds (PPTs) in the vertebral segments between patients with chronic lower back pain (CLBP) and healthy participants without back pain and to determine the correlation between vertebral bone-segment PPT and pain level, lower back pain dysfunction, and psychological status in patients with CLBP. Methods: The subjects of this study were 23 healthy adults and 23 adults with CLBP. PPT was measured in 23 spinal bone segments using a PPT device, and the CLBP group was subjected to a pain level test (NRS) and a psychological test using the Korean version of the pain catastrophizing scale (KPCS). The functional level was assessed using the Korean version of the Oswestry disability index (KODI). Results: PPTs of the spinal sclerotomes were significantly lower in patients with CLBP than in healthy participants. In the CLBP group, the composite score of lumbar PPTs showed a high correlation with the composite scores for all segments, but not with the pain level (NRS), KPCS score, and spinal sclerotome PPT. Moreover, PPT in the sacral sclerotomes showed a significant negative correlation coefficient with function, with a KODI score of -.462 (p<.01). Conclusion: In this study, PPTs in all spinal segments in patients with CLBP was significantly lower than that in healthy subjects. The PPTs of the lumbar region was significantly correlated with the PPTs of other spinal regions. Through this study, it was found that there were changes in PPTs in CLBP patients not only in the lumbar region but also in other spinal regions. This information should be considered during clinical treatment of patients with low back pain.

  • PDF

Numerical investigation on seismic performance of reinforced rib-double steel plate concrete combination shear wall

  • Longyun Zhou;Xiaohu Li;Xiaojun Li
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.78-91
    • /
    • 2024
  • Double steel plate concrete composite shear wall (SCSW) has been widely utilized in nuclear power plants and high-rise structures, and its shear connectors have a substantial impact on the seismic performance of SCSW. Therefore, in this study, the mechanical properties of SCSW with angle stiffening ribs as shear connections were parametrically examined for the reactor containment structure of nuclear power plants. The axial compression ratio of the SCSW, the spacing of the angle stiffening rib arrangement and the thickness of the angle stiffening rib steel plate were selected as the study parameters. Four finite element models were constructed by using the finite element program named ABAQUS to verify the experimental results of our team, and 13 finite element models were established to investigate the selected three parameters. Thus, the shear capacity, deformation capacity, ductility and energy dissipation capacity of SCSW were determined. The research results show that: compared with studs, using stiffened ribs as shear connectors can significantly enhance the mechanical properties of SCSW; When the axial compression ratio is 0.3-0.4, the seismic performance of SCSW can be maximized; with the lowering of stiffener gap, the shear bearing capacity is greatly enhanced, and when the gap is lowered to a specific distance, the shear bearing capacity has no major affect; in addition, increasing the thickness of stiffeners can significantly increase the shear capacity, ductility and energy dissipation capacity of SCSW. With the rise in the thickness of angle stiffening ribs, the improvement rate of each mechanical property index slows down. Finally, the shear bearing capacity calculation formula of SCSW with angle stiffening ribs as shear connectors is derived. The average error between the theoretical calculation formula and the finite element calculation results is 8% demonstrating that the theoretical formula is reliable. This study can provide reference for the design of SCSW.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Hysteresis performance of earthquake-damaged resilient RAC shear walls retrofitted with CFRP strips and steel plates

  • Jianwei Zhang;Siyuan Wang;Man Zhang;Yuping Sun;Hongwei Wang
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.357-376
    • /
    • 2024
  • In this paper, weakly bonded ultra-high-strength steel bars (UHSS) were used as longitudinal reinforcement in recycled aggregate concrete shear walls to achieve resilient performance. The study evaluated the repairability and hysteresis performance of shear walls before and after retrofitting. Quasi-static tests were performed on recycled aggregate concrete (RAC) and steel fiber reinforced recycled aggregate concrete (FRAC) shear walls to investigate the reparability of resilient shear walls when loaded to 1% drift ratio. Results showed that shear walls exhibited drift-hardening properties. The maximum residual drift ratio and residual crack width at 1% drift ratio were 0.107% and 0.01mm, respectively, which were within the repairable limits. Subsequently, shear walls were retrofitted with bonded X-shaped CFRP strips and steel plates wrapped at the bottom and retested. Except for a slight reduction in initial stiffness, earthquake-damaged resilient shear walls retrofitted with a composite method still had satisfactory hysteresis performance. A revised damage assessment index D, has been proposed to assess of damage degree. Moreover, finite-element analysis for the shear wall before and after retrofit retrofitting was established in OpenSees and verified with experimental results. The finite element results and test results were in good agreement. Finally, parametric analysis was performed.

우리나라 식품안전보건지표를 활용한 사례연구: 다양한 통합지수 산출을 통한 주요 지표 확인 및 사회경제적 지위와의 상관성 파악 (A Case Study for the Utilization of Food Safety Health Indicators in Korea: Computation of Composite Indices to Verify Important Indicators and Understand Correlations with Socioeconomic Status)

  • 최지혜;변가람;이종태
    • 한국식품위생안전성학회지
    • /
    • 제30권3호
    • /
    • pp.227-235
    • /
    • 2015
  • 식품안전보건지표는 그 활용성이 높아 국외에서는 종합적인 환경보건지표 내 세부영역에서 개발되어 활용되고 있으나, 국내의 경우 환경보건지표와 독자적으로 개발되어 도입단계에 있다. 본 연구에서는 기 개발된 식품안전보건지표를 활용할 수 있는 방안을 사례연구의 형태로 제시하였다. 본 연구에서 선정하여 제시한 활용방안으로는 지수화를 통한 통합식품안전보건지수 산출, 통합식품안전보건지수와 이를 구성하는 식품안전보건지표간의 상관성평가, 통합식품안전보건지수와 사회경제적 지위와의 상관성평가가 있다. 지역 내에서 식품안전보건상태의 변화를 나타내는 통합식품안전보건지수I과 해당 년도의 지역별 식품안전보건수준을 나타내는 통합식품안전보건지수II가 산출되었다. 통합식품안전보건지수I은 Campylobacter jejuni, Bacillus cereus, 살모넬라, 원인미상으로 인한 식품매개질환 발생건수, 식품매개 법정감염병 발생률 중 장출혈성 대장균 발생률와 통계적으로 유의한 상관관계가 있었다. 통합식품안전보건지수II는 외국인 비율과 여성 비율이 증가할수록 통계적으로 유의하게 감소하였고, 인구밀도가 증가할 수록 통계적으로 유의하게 증가하였다. 제시된 활용방안을 통해 전반적인 국내 식품안전보건상태와 지역별 연도별 식품안전보건상태의 변화원인을 파악할 수 있으며, 식품안전과 관련이 있을 것으로 예상되는 기타 요인과의 연관성을 분석하여 추가적인 추론을 할 수 있다. 이 외에도 식품안전보건지표는 다양한 방면으로 활용이 가능하고, 정책적 기준 설정 및 방향성 제시의 근거자료로도 활용할 수 있으므로 향후 더욱 활발한 연구와 지속적인 관심이 필요하다.