• Title/Summary/Keyword: Composite Floor System

Search Result 78, Processing Time 0.022 seconds

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

Underground Parking Lot by ANI Girder(ANgle Integrated Girder) and HCS (ANI Girder(앵글 및 래티스 철근으로 구성된 강조립보)와 HCS(Hollow Core Slab)를 활용한 지하주차장)

  • Choi, Ik-Jun;Jeon, Byong-Kap;Yom, Kyong-Soo;Choi, Sung-Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.101-102
    • /
    • 2016
  • Through the story height reducing method, cost saving can be implemented in many aspects. Recently, as one of PC floor system, HCS(Hollow Core Slab) has been applied in many project, and it is proved that it is excellent in productivity, economic efficiency, and workability as well. We developed a new composite beam(ANI Girder) which can be associated with HCS and reinforced with a truss-shape rebar and angle. As a result of actual application on underground parking building with HCS, it is confirmed that this system is effective in workability and story height reducing.

  • PDF

AN EXPERIMENTAL STUDY ON THE EFFECT OF COMPOSITE RESIN AND BACTERIA TO PULP RESPONSE (복합(複合)레진과 세균(細菌)이 치수반응(齒髓反應)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Cho, Sung-Sik;Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.53-67
    • /
    • 1988
  • An investigation was carried out to compare the pulp responses against a few type of composite and streptococcus mutans contamination under the zinc oxide eugenol cement, and also confirmed pulpal responses of various composites with or without base. Seventy eight teeth from 6 dogs were employed and divided into 6 groups. Class V cavities were prepared on each tooth routinely with low speed dental engine. Paper disc about 0.3mm thick was immersed in the BHI broth in which streptococcus mutans had been enriched and the disc was inserted on the cavity floor prior to filling. Scotch bond puls Silux as Bis-GMA system composite resin and Helimolar as urethane system composite resin were adopted. Control group: Zinc-Oxide Eugenol cement filling Experimental groups: Group 1. Scotch bond + Silux filling with Dycal base Group 2. Heliomolar filling with Dycal base Group 3. Scotch bond + Silux filling without base Group 4. Heliomolar filling without base Group 5. Streptococcus mutans application. All cavities were sealed with thick ZOE cement to avoid marginal leakage. Postoperative intervals of 1, 2, 3, 4, 5 and 6 weeks teeth were carefully extracted, processed and stained with Hematoxylin and Eosin. The results were as follows: 1. S. mutans application group and composites without any base showed more severe pupal response than control group and dyca based groups. 2. The experimental group of S. mutans application showed severe response in the early stage compared to the two groups of composite resin without base, but no significant difference was found following periods. 3. The difference of pulpal response is not significant between Bis-GMA system and urethane system. 4. Streptococcus mutans application group and composites without base groups showed the evidence of histologic recovery at the six week cases and the large amount of reparative dentin was the prominent feature. 5. Pulp responses against every material were inclined to normal according to the time elapsed.

  • PDF

An Analytical Study on Hysteresis Behavior of End-reinforced Steel-beam system(Eco-girder) (단부 보강한 합성보(Eco-girder)의 이력거동에 대한 수치해석적 연구)

  • Chae, Heung-Suk;Ryoo, Jae-Yong;Chung, Kyung-Soo;Moon, Young-Min;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2010
  • The end-reinforced composite-beam (eco-girder) system was developed that has characteristics of the existing composite beams such as reduced floor height and increased strength. With it, less use of steel is expected. In the eco-girder system, only both ends of the steel-frame beam, which are vulnerable to the ultimate moment, are reinforced with steel plates so that the steel frame beam design will be based on the moment at the beam center. This study used fiber element analysis, which is a simple representation and numerical integration of the principles of the detailed Finite Element Method(FEM), to predict the hysteretic behavior of reinforced composite beams under cyclic loading. The validity of the numerical method was verified by comparing the results of this study with those of previous studies. In addition, the hysteretic behavior of the eco-girder was compared with that of the existing composite beams.

Effect of MDOF structures' optimal dampers on seismic fragility of piping

  • Jung, Woo Young;Ju, Bu Seog
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.563-576
    • /
    • 2015
  • Over the past few decades, seismic retrofitting of structural systems has been significantly improved by the adoption of various methods such as FRP composite wraps, base isolation systems, and passive/active damper control systems. In parallel with this trend, probabilistic risk assessment (PRA) for structural and nonstructural components has become necessary for risk mitigation and the achievement of reliable designs in performance-based earthquake engineering. The primary objective of the present study was to evaluate the effect on piping fragility at T-joints due to seismic retrofitting of structural systems with passive energy-dissipation devices (i.e., linear viscous dampers). Three mid-rise building types were considered: without any seismic retrofitting; with distributed damper systems; with optimal placement of dampers. The results showed that the probability of piping system failure was considerably reduced in a Multi Degree of Freedom (MDOF) building retrofitted with optimal passive damper systems at lower floor levels. This effect of damper systems on piping fragility became insignificant as the floor level increased.

Prediction of Interior Noise for Tilting Train by using Transmission Loss (투과손실을 이용한 틸팅차량의 실내소음 예측)

  • Kim, Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.69-72
    • /
    • 2007
  • In this paper, we describe the analysis of interior noise for tilting train that is being developed in Korea. Tilting train is made of composite material to reduce the car body's weight and attached a self-steering system on bogie to improve curving performance. However, the acoustic performance (Transmission Loss) of such material is worse than the materials of conventional train, such as aluminum, steel and so on. Therefore, we measure the transmission loss of side wall / floor of tiling train and predict the interior noise for tilting train using its measuring results

  • PDF

시공중인 합성바닥슬래브의 처짐보정에 대한 수치적 연구

  • 김영찬;이정헌
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.293-298
    • /
    • 2002
  • In the composite deck system, beams and deck plates deflect during construction. This lens-shaped deflection may cause problems in the serviceability of a building. Therefore, it should be compensated to be level. Several methods for leveling of floor slab are available, such as increasing stiffness of structural members, pouring additional concrete. In this study, additional weight and volume o( concrete for level compensation are examined for various size of floors.

  • PDF

Constructability Analysis of Green Columns at the Low Bending Moment Zone

  • Lee, Sung-Ho;Park, Jun-Young;Lim, Chae-Yeon;Kim, Sun-Kuk
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.4
    • /
    • pp.12-19
    • /
    • 2013
  • Green Frame is an environmentally friendly column-beam system composed of composite PC members that can increase buildings' life spans while reducing resource consumption. Typically, connections of PC and RC columns occur at the boundaries of each floor, which is at the upper section of slabs, causing the boundary of each floor to generate the maximum moment. Although it is not optimal in terms of structural safety to connect members at a location where the moment is high, this approach is highly adopted due to its constructability. We propose that a superior approach that employs the concept of connecting columns at the low bending moment zone can be applied to quickly and safely install green columns, the main structural members of Green Frame. Connection of green columns at the low bending moment zone can be classified into three techniques, depending on the method of reinforcing the joints, which have different connection characteristics and construction methods. Research is needed to compare the features of each method of reinforcing the joints so that the most appropriate column connection method can be chosen for the site conditions. This study aims to confirm the structural safety of the connection component at the low bending moment zone and to compare and analyze the construction duration, unit price, quality and safety performance of each column connection method. The study results are anticipated to activate the use of composite precast concrete and to be used as development data in the future.

Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental Development of a Novel Structural System

  • Wehbe, Nadim;Bahmani, Pouria;Wehbe, Alexander
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2013
  • The use of light-gauge steel framing in low-rise commercial and industrial building construction has experienced a significant increase in recent years. In such construction, the wall framing is an assembly of cold-formed steel (CFS) studs held between top and bottom CFS tracks. Current construction methods utilize heavy hot-rolled steel sections, such as steel angles or hollow structural section tubes, to transfer the load from the end seats of the floor joist and/or from the load-bearing wall studs of the stories above to the supporting load-bearing wall below. The use of hot rolled steel elements results in significant increase in construction cost and time. Such heavy steel elements would be unnecessary if the concrete slab thickening on top of the CFS wall can be made to act compositely with the CFS track. Composite action can be achieved by attaching stand-off screws to the track and encapsulating the screw shank in the deck concrete. A series of experimental studies were performed on full-scale test specimens representing concrete/CFS flexural elements under gravity loads. The studies were designed to investigate the structural performance of concrete/CFS simple beams and concrete/CFS continuous headers. The results indicate that concrete/CFS composite flexural elements are feasible and their structural behavior can be modeled with reasonable accuracy.

Prediction of Interior Noise for Tilting Train by using Transmission Loss (투과손실을 이용한 틸팅차량의 실내소음 예측)

  • Kim, Jae-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.405-408
    • /
    • 2007
  • In this paper, we describe the analysis of interior noise for tilting train that is being developed in Korea. Tilting train is made of composite material to reduce the car body's weight and attached a self-steering system on bogie to improve curving performance. However, the acoustic performance (Transmission Loss) of such material is worse than the materials of conventional train, such as aluminum, steel and so on. Therefore, we measure the transmission loss of side wall/floor of tiling train and predict the interior noise for tilting train using its measuring results.