• Title/Summary/Keyword: Composite Floor System

Search Result 78, Processing Time 0.018 seconds

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking

  • Battista, Ronaldo C.;Varela, Wendell D.
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.467-478
    • /
    • 2019
  • Composite floor structures formed by continuous slab panels may be susceptible to excessive vibrations, even when properly designed in terms of ultimate limit state criteria. This is due to the inherent vibration characteristics of continuous floor slabs composed by precast orthotropic reinforced concrete panels supported by steel beams. These floor structures display close spaced multimode vibration frequencies and this dynamic characteristic results in a non-trivial vibration problem. Structural stiffening and/or insertion of struts between floors are the usual tentative solution applied to existing vibrating floor structures. Such structural alterations are in general expensive and unsuitable. In this paper, this vibration problem is analyzed on the basis of results obtained from experimental measurements in typical composite floors and their theoretical counterpart obtained with computational modeling simulations. A passive control system composed by multiple synchronized dynamic attenuators (MSDA) was designed and installed in these floor structures and its efficiency was evaluated both experimentally and through numerical simulations. The results obtained from experimental tests of the continuous slab panels under human walking dynamic action proved the effectiveness of this control system in reducing vibrations amplitudes.

A Study on Modifacation of a Prediction Equation for the Natural Frequency of a Composite Deck Floor System through the Simplification of a section Transformation (합성데크 플레이트 바닥구조의 단면환산 단순화를 통한 고유진동수 예측식의 보정에 관한 연구)

  • Im, Ji Hoon;Park, Jin Young;Hong, Won Kee;Kim, Hee Cheul
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.549-556
    • /
    • 2002
  • The natural frequency of a system is commonly used in evaluating the serviceability condition of a floor. However. the current equations recommended in many building codes do not consider the various material types of a slab system; thus. different results are observed. Likewise. the transformation of a slab section required to predict the natural frequency of a composite deck plate is complicated. due to the varying shapes of the deck plates. Therefore. a new and simplified method of transforming a composite slab into an equivalent concrete slab is proposed. he modified vibration prediction equation was proposed based on the current vibration prediction equation recommended by LRFD. Compared to other equations. it is the closest to those obtained from experiments. The modified equation provides about 14.3% more accurate results than that recommended by LRFD. Likewise. the applicability of the proposed equation to other types of composite deck plate floor system was validated.

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

Connection stiffness and natural frequency of DuraGal lightweight floor systems

  • Zhao, X.L.;Taplin, G.;Alikhail, M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.269-284
    • /
    • 2003
  • This paper reports a series of component tests on a lightweight floor system and a method to predict the natural frequency of the floor using a frame analysis program. Full-scale floor tests are also briefly described. DuraGal steel Rectangular Hollow Sections (in-line galvanised RHS) are used as joists, bearers and piers in DuraGal lightweight floor systems. A structural grade particleboard is used as decking. Connection stiffness between different components (bearer, joist, pier and floor decking) was determined. A 40% composite action was achieved between the RHS joist and the particleboard. Both 2D and 3D models were developed to study the effect of connection stiffness on predicting the natural frequency of DuraGal lightweight floor systems. It has been found that the degree of shear connection between the bearer and the joist has a significant influence on the floor natural frequency. The predicted natural frequencies are compared with measured values from full scale floor testing.

Experimental and numerical study on the PSSDB system as two-way floor units

  • Al-Shaikhli, Marwan S.;Badaruzzaman, Wan Hamidon Wan;Al Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.33-48
    • /
    • 2022
  • This paper researches a lightweight composite structure referred to as the Profiled Steel Sheeting Dry Board (PSSDB). It is fundamentally produced by connecting a Profiled Steel Sheeting to Dry Board using mechanical screws. It is mainly employed as floor panels. However, almost all studies have focused on researching the one-way structural performance. Therefore, this study focuses on the bending behaviour of the two-way PSSDB floor system using both of Finite Element (FE) and Experimental analysis. Four panels were used in the experimental tests, and a mild steel plate has been applied at the bottom for two panels. For the FE process, models were created using ABAQUS software. 4 parametric studies have been utilized to understand the system's influential elements. From the experimental tests, it was found that using Steel Plate shall optimize the two-way action of the system and depending on the type of dry board the improvement in stiffness may reach up to 38%. It was shown from the FE analysis that the dry board, profiled steel sheeting and steel plat can affect the system by up to 10 %, 17% and 3% respectively, while applying a uniform load demonstrate a better two-way action.

Composite Wood-Concrete Structural Floor System with Horizontal Connectors

  • SaRibeiro, Ruy A.;SaRibeiro, Marilene G.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • The concept of horizontal shear connection utilization on wood-concrete beams intends to be an alternative connection detail for composite wood-concrete decks. The volume of sawn-wood is over three times more expensive than concrete, in Brazil. In order to be competitive in the Brazilian market we need a composite deck with the least amount of wood and a simple and inexpensive connection detail. This research project uses medium to high density tropical hardwoods managed from the Brazilian Amazon region and construction steel rods. The beams studied are composed of a bottom layer of staggered wood boards and a top layer of concrete. The wood members are laterally nailed together to form a wide beam, and horizontal rebar connectors are installed before the concrete layer is applied on top. Two sets of wood-concrete layered beams with horizontal rebar connectors (6 and 8) were tested in third-point loading flexural bending. The initial results reveal medium composite efficiency for the beams tested. An improvement on the previously conceived connection detail (set with six connectors) for the composite wood-concrete structural floor system was achieved by the set with eight connectors. The new layout of the horizontal rebar connectors added higher composite efficiency for the beams tested. Further analysis with advanced rigorous numerical Finite Element Modeling is suggested to optimize the connection parameters. Composite wood-concrete decks can attend a large demand for pedestrian bridges, as well as residential and commercial slabs in the Brazilian Amazon.

Flexural Performance Evaluation of Semi-slim floor Composite Beams for Reduction of Story Height (층고절감을 위한 반슬림플로어 합성보의 휨성능 평가)

  • Lee, E.T.;Lee, Sang Hoon;Jang, Bo Ra
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.165-173
    • /
    • 2008
  • In order to promote the practicality of high-rise steel buildings, the development of structural system which have the better fire resistance, the changeable plan, and the quality control of construction with general composite beams is needed. In this research, new semi-slim floor which the defect of general slim floor was complemented was evaluated to investigate the concrete integration with slim-flor beam and the flexural performance. 5 simply supported semi-slim floor beam tests were performed with parameters; structural form of slab support beam, slab thickness, with or without web opening, and shear connection. Experimental results showed that all specimen s had good ductile behavior.

Parametric study on the structural behaviour of composite slim floors with hollow-core slabs

  • Spavier, Patricia T.S.;Kataoka, Marcela N.;El Debs, Ana Lucia H.C.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.497-506
    • /
    • 2021
  • Steel-concrete composite structures and precast concrete elements have a common prefabrication process and allow fast construction. The use of hollow-core slabs associated with composite floors can be advantageous. However, there are few studies on the subject, impeding the application of such systems. In this paper, a numerical model representing the considered system using the FE (finite element)-based software DIANA is developed. The results of an experimental test were also presented in Souza (2016) and were used to validate the model. Comparisons between the numerical and test results were performed in terms of the load versus displacement, load versus slip, and load versus strain curves, showing satisfactory agreement. In addition, a wide parametric study was performed, evaluating the influence of several parameters on the behaviour of the composite system: The strength of the steel beam, thickness of the web, thickness and width of the bottom flange of the steel beam and concrete cover thickness on top of the beam. The results indicated a great influence of the steel strength and the thickness of the bottom flange of the steel beam on the capacity of the composite floor. The remaining parameters had limited influences on the results.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.