• Title/Summary/Keyword: Composite Feature

Search Result 189, Processing Time 0.024 seconds

Construction of Composite Feature Vector Based on Discriminant Analysis for Face Recognition (얼굴인식을 위한 판별분석에 기반한 복합특징 벡터 구성 방법)

  • Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.834-842
    • /
    • 2015
  • We propose a method to construct composite feature vector based on discriminant analysis for face recognition. For this, we first extract the holistic- and local-features from whole face images and local images, which consist of the discriminant pixels, by using a discriminant feature extraction method. In order to utilize both advantages of holistic- and local-features, we evaluate the amount of the discriminative information in each feature and then construct a composite feature vector with only the features that contain a large amount of discriminative information. The experimental results for the FERET, CMU-PIE and Yale B databases show that the proposed composite feature vector has improvement of face recognition performance.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

Feature Recognition of Prismatic Parts for Automated Process Planning : An Extended AAG A, pp.oach (공정계획의 자동화를 위한 각주형 파트의 특징형상 인식 : 확장된 AAG 접근 방법)

  • 지원철;김민식
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.1
    • /
    • pp.45-58
    • /
    • 1996
  • This paper describes an a, pp.oach to recognizing composite features of prismatic parts. AAG (Attribute Adjacency Graph) is adopted as the basis of describing basic feature, but it is extended to enhance the expressive power of AAG by adding face type, angles between faces and normal vectors. Our a, pp.oach is called Extended AAG (EAAG). To simplify the recognition procedure, feature classification tree is built using the graph types of EEA and the number of EAD's. Algorithms to find open faces and dimensions of features are exemplified and used in decomposing composite feature. The processing sequence of recognized features is automatically determined during the decomposition process of composite features.

  • PDF

Generative Process Planning through Feature Recognition (특징형상 인식을 통한 창성적 자동 공정계획 수립 - 복합특징형상 분류를 중심을 -)

  • 이현찬;이재현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.274-282
    • /
    • 1998
  • A feature is a local shape of a product directly related to the manufacturing process. The feature plays a role of the bridge connecting CAD and CAM. In the process planning for he CAM, information on manufacturing is required. To get the a manufacturing information from CAD dat, we need to recognize features. Once features are recognized, they are used as an input for the process planning. In this paper, we thoroughly investigate the composite features, which are generated by interacting simple features. The simple features in the composite feature usually have precedence relation in terms of process sequence. Based on the reason for the precedence relation, we classify the composite features for the process planning. In addition to the precedence relation, approach direction is used as an input for the process planning. In the process planning, the number of set-up orientations are minimized whole process sequence for the features are generated. We propose a process planning algorithm based on the topological sort and breadth-first search of graphs. The algorithn is verified using sample products.

  • PDF

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

A note on the distance distribution paradigm for Mosaab-metric to process segmented genomes of influenza virus

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.7.1-7.7
    • /
    • 2020
  • In this paper, we present few technical notes about the distance distribution paradigm for Mosaab-metric using 1, 2, and 3 grams feature extraction techniques to analyze composite data points in high dimensional feature spaces. This technical analysis will help the specialist in bioinformatics and biotechnology to deeply explore the biodiversity of influenza virus genome as a composite data point. Various technical examples are presented in this paper, in addition, the integrated statistical learning pipeline to process segmented genomes of influenza virus is illustrated as sequential-parallel computational pipeline.

A Robust Hybrid Method for Face Recognition Under Illumination Variation (조명 변이에 강인한 하이브리드 얼굴 인식 방법)

  • Choi, Sang-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.129-136
    • /
    • 2015
  • We propose a hybrid face recognition to deal with illumination variation. For this, we extract discriminant features by using the different illumination invariant feature extraction methods. In order to utilize both advantages of each method, we evaluate the discriminant power of each feature by using the discriminant distance and then construct a composite feature with only the features that contain a large amount of discriminative information. The experimental results for the Multi-PIE, Yale B, AR and yale databases show that the proposed method outperforms an individual illumination invariant feature extraction method for all the databases.

Development of Non-destructive Evaluation Method for Composite Structures using Tapping Sound (타격음을 이용한 복합재료 구조물의 비파괴 검사법 개발)

  • 황준석;김승조
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • A new non-destructive evaluation method using tapping sound is proposed. This method, named Tapping Sound Analysis, is using the difference between tapping sound data of healthy structure and defective structure as the criteria of determination of internal defect of composite structure. For the characterization of tapping sound, a feature extraction method based on wavelet packet transform is proposed. And a feature index is defined for the decision of existence of internal defects. To prove the possibility of proposed method as a non-destructive evaluation method, experimental study is performed. The tapping sound data of healthy structure and defective structure are measured and compared based on the proposed decision method. The experimental results showed that the feature index is a good indicator for the determination of internal defects.

Machining Sequence Generation with Machining Times for Composite Features (가공시간에 의한 복합특징형상의 가공순서 생성)

  • 서영훈;최후곤
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.244-253
    • /
    • 2001
  • For more complete process planning, machining sequence determination is critical to attain machining economics. Although many studies have been conducted in recent years, most of them suggests the non-unique machining sequences. When the tool approach directions(TAD) are considered fur a feature, both machining time and number of setups can be reduced. Then, the unique machining sequence can be extracted from alternate(non-unique) sequences by minimizing the idle time between operations within a sequence. This study develops an algorithm to generate the best machining sequence for composite prismatic features in a vertical milling operation. The algorithm contains five steps to produce an unique sequence: a precedence relation matrix(PRM) development, tool approach direction determination, machining time calculation, alternate machining sequence generation, and finally, best machining sequence generation with idle times. As a result, the study shows that the algorithm is effective for a given composite feature and can be applicable fur other prismatic parts.

  • PDF

Handwritten Numeral Recognition using Composite Features and SVM classifier (복합특징과 SVM 분류기를 이용한 필기체 숫자인식)

  • Park, Joong-Jo;Kim, Tae-Woong;Kim, Kyoung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2761-2768
    • /
    • 2010
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by projection runlength, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our feature sets was tested by recognition experiments on the handwritten numeral database CENPARMI, where we used SVM with RBF kernel as a classifier. The experimental results showed that each combination of two or three features gave a better performance than a single feature. This means that each single feature works with a different discriminating power and cooperates with other features to enhance the recognition accuracy. By using the composite feature of the three features, we achieved a recognition rate of 98.90%.